Inventiones mathematicae

, Volume 195, Issue 1, pp 1–277

The Iwasawa Main Conjectures for GL2

Article

Abstract

We prove the one-, two-, and three-variable Iwasawa-Greenberg Main Conjectures for a large class of modular forms that are ordinary with respect to an odd prime p. The method of proof involves an analysis of an Eisenstein ideal for ordinary Hida families for GU(2,2).

References

  1. 1.
    Amice, Y., Vélu, J.: Distributions p-Adiques Associes aux Sries de Hecke. Asterisque, vol. 24–25, pp. 119–131. Soc. Math. France, Paris (1975) Google Scholar
  2. 2.
    Bertolini, M., Darmon, H.: Heegner points on Mumford-Tate curves. Invent. Math. 126(3), 413–456 (1996) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bertolini, M., Darmon, H.: Iwasawa’s main conjecture for elliptic curves over anticyclotomic Z p-extensions. Ann. Math. (2) 162(1), 1–64 (2005) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Böcherer, S., Schulze-Pillot, R.: On a theorem of Waldspurger and on Eisenstein series of Klingen-type. Math. Ann. 288, 361–388 (1990) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Borel, A.: Introduction to automorphic forms. In: Algebraic Groups and Discontinuous Subgroups, Boulder, CO, 1965. Proc. Sympos. Pure Math., vol. IX, pp. 199–210. Am. Math. Soc., Providence (1966) CrossRefGoogle Scholar
  6. 6.
    Casselman, W.: Introduction to the theory of admissible representations of p-adic groups. http://www.math.ubc.ca/~cass/research/pdf/padic-book.pdf
  7. 7.
    Casselman, W.: On some results of Atkin and Lehner. Math. Ann. 201, 301–314 (1973) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chai, C.-L.: Methods for p-adic monodromy. J. Inst. Math. 7, 247–268 (2008) MATHGoogle Scholar
  9. 9.
    Diamond, F.: On deformation rings and Hecke rings. Ann. Math. (2) 144(1), 137–166 (1996) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Faltings, G., Chai, C.-L.: Degeneration of Abelian Varieties. Ergebnisse der Math., vol. 22. Springer, Berlin (1990) CrossRefMATHGoogle Scholar
  11. 11.
    Finis, T.: Divisibility of anticyclotomic L-functions and theta functions with complex multiplication. Ann. Math. (2) 163(3), 767–807 (2006) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Fujiwara, K.: Arithmetic compactifications of Shimura varieties. Preprint (1991) Google Scholar
  13. 13.
    Gelbart, S., Piatetski-Shapiro, I., Rallis, S.: Explicit Constructions of Automorphic L-Functions. Lecture Notes in Math., vol. 1254. Springer, Berlin (1987) Google Scholar
  14. 14.
    Gindikin, S.G., Karpelevich, F.I.: Plancherel measure for symmetric Riemannian spaces of non-positive curvature. Dokl. Akad. Nauk SSSR 145, 252–255 (1962). English transl.: Soviet Math. Dokl. 3, 962–965 (1962) MathSciNetGoogle Scholar
  15. 15.
    Greenberg, R.: On p-adic L-functions and cyclotomic fields. Nagoya Math. J. 56, 61–77 (1975) MATHMathSciNetGoogle Scholar
  16. 16.
    Greenberg, R.: Iwasawa theory and p-adic Deformations of Motives. In: Motives, Seattle, WA, 1991. Proc. Symp. Pure. Math., vol. 55, Part 22, pp. 193–223. Am. Math. Soc., Providence (1994) CrossRefGoogle Scholar
  17. 17.
    Greenberg, R.: Iwasawa theory for elliptic curves. In: Arithmetic Theory of Elliptic Curves, Cetraro, 1997. Lecture Notes in Math., vol. 1716, pp. 51–144. Springer, Berlin (1999) CrossRefGoogle Scholar
  18. 18.
    Greenberg, R.: On the structure of Selmer groups. Preprint. http://www.math.washington.edu/~greenber/Sel.pdf
  19. 19.
    Greenberg, R., Stevens, G.: p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111(2), 407–447 (1993) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Greenberg, R., Vatsal, V.: On the Iwasawa invariants of elliptic curves. Invent. Math. 142, 17–63 (2000) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Gross, B.H.: On the Satake isomorphism. In: Galois Representations in Arithmetic Algebraic Geometry, Durham, 1996. London Math. Soc. Lecture Note Ser., vol. 254, pp. 223–237. Cambridge Univ. Press, Cambridge (1998) CrossRefGoogle Scholar
  22. 22.
    Harris, M.: Eisenstein series on Shimura varieties. Ann. Math. (2) 119(1), 59–94 (1984) CrossRefMATHGoogle Scholar
  23. 23.
    Harris, M.: Functorial properties of toroidal compactifications of locally symmetric varieties. Proc. Lond. Math. Soc. (3) 59 (1989) Google Scholar
  24. 24.
    Harris, M.: L-functions and periods of polarized regular motives. J. Reine Angew. Math. 483, 75–161 (1997) MATHMathSciNetGoogle Scholar
  25. 25.
    Harris, M., Li, J.-S., Skinner, C.: p-adic L-functions for unitary groups II (in preparation) Google Scholar
  26. 26.
    Hida, H.: Congruence of cusp forms and special values of their zeta functions. Invent. Math. 63(2), 225–261 (1981) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Hida, H.: A p-adic measure attached to the zeta functions associated with two elliptic modular forms. I. Invent. Math. 79(1), 159–195 (1985) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Hida, H.: A p-adic measure attached to the zeta functions associated with two elliptic modular forms II. Ann. Inst. Fourier 38, 1–83 (1988) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Hida, H.: Nearly ordinary Hecke algebras and Galois representations of several variables. In: Algebraic Analysis, Geometry, and Number Theory, pp. 115–134. Johns Hopkins Univ. Press, Baltimore (1989) Google Scholar
  30. 30.
    Hida, H.: Modules of congruence of Hecke algebras and L-functions associated with cusp forms. Am. J. Math. 110(2), 323–382 (1988) CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Hida, H.: Control theorems of coherent sheaves on Shimura varieties of PEL-type. J. Inst. Math. Jussieu 1(1), 1–76 (2002) MATHMathSciNetGoogle Scholar
  32. 32.
    Hida, H.: p-Adic Automorphic Forms on Shimura Varieties. Springer Monographs in Mathematics. Springer, New York (2004) CrossRefMATHGoogle Scholar
  33. 33.
    Hida, H.: Irreducibility of the Igusa tower over unitary Shimura varieties. In: On Certain L-Functions. Clay Math. Proc., vol. 13, pp. 187–203. Am. Math. Soc., Providence (2011) Google Scholar
  34. 34.
    Hida, H., Tilouine, J.: On the anticyclotomic main conjecture for CM fields. Invent. Math. 117(1), 89–147 (1994) CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Howe, R.: On the principal series of GLn over p-adic fields. Trans. Am. Math. Soc. 177, 275–286 (1973) MATHMathSciNetGoogle Scholar
  36. 36.
    Kato, K.: p-adic Hodge theory and values of zeta functions of modular forms. In: Cohomologies p-Adiques et Applications Arithmetiques. III. Asterisque, vol. 295, pp. 117–290 (2004), ix Google Scholar
  37. 37.
    Kottwitz, R.: Points on some Shimura varieties over finite fields. J. Am. Math. Soc. 5(2), 373–444 (1992) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Kudla, S.S.: Splitting metaplectic covers of dual reductive pairs. Isr. J. Math. 87(1–3), 361–401 (1994) CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Lan, K.-W.: Arithmetic compactifications of PEL-type Shimura varieties. Harvard PhD thesis (2008) (revised 2010) Google Scholar
  40. 40.
    Lan, KW.: Comparison between analytic and algebraic construction of toroidal compactifications of PEL-type Shimura varieties. Preprint (2010) Google Scholar
  41. 41.
    Langlands, R.P.: Euler Products. Yale Mathematical Monographs, vol. 1. Yale University Press, New Haven (1971) MATHGoogle Scholar
  42. 42.
    Langlands, R.P.: On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Math., vol. 544. Springer, Berlin (1976) MATHGoogle Scholar
  43. 43.
    Lapid, E., Rallis, S.: On the local factors of representations of classical groups. In: Automorphic Representations, L-Functions and Applications: Progress and Prospects. Ohio State Univ. Math. Res. Inst. Publ., vol. 11, pp. 309–359. de Gruyter, Berlin (2005) Google Scholar
  44. 44.
    Mazur, B.: Rational points of Abelian varieties with values in tower of number fields. Invent. Math. 18, 183–266 (1972) CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Mazur, B.: Rational isogenies of prime degree. Invent. Math. 44(2), 129–162 (1978) CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math. 25, 1–61 (1974) CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Mazur, B., Tate, J., Teitelbaum, J.: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84(1), 1–48 (1986) CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Mazur, B., Tilouine, J.: Representations galoisiennes, differentielles de Kähler et “conjectures principales”. Publ. Math. IHÉS 71, 65–103 (1990) CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Mazur, B., Wiles, A.: Class fields of Abelian extensions of Q. Invent. Math. 76, 179–330 (1984) CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Miyake, T.: Modular Forms. Springer, Berlin (1989) MATHGoogle Scholar
  51. 51.
    Mœglin, C., Waldspurger, J.-L.: Spectral Decomposition and Eisenstein Series. Une Paraphrase de L’ecriture. Cambridge Tracts in Mathematics, vol. 113. Cambridge Univ. Press, Cambridge (1995) CrossRefGoogle Scholar
  52. 52.
    Nekovář, J.: On the parity of ranks of Selmer groups. II. C. R. Acad. Sci. Paris Ser. I Math. 332(2), 99–104 (2001) CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Ochiai, T.: On the two-variable Iwasawa main conjecture. Compos. Math. 142(5), 1157–1200 (2006) CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Perrin-Riou, B.: Functions L p-adiques associées à une forme modulaire et à un corps quadratique imaginaire. J. Lond. Math. Soc. (2) 38(1), 1–32 (1988) CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Ribet, K.: A modular construction of unramified p-extensions of Q(μ p). Invent. Math. 34(3), 151–162 (1976) CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    Ribet, K.: On modular representations of \(\operatorname{Gal}(\bar{\mathbf {Q}}/\mathbf{Q})\) arising from modular forms. Invent. Math. 100(2), 431–476 (1990) CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Rubin, K.: The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103(1), 25–68 (1991) CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Serre, J.-P.: Abelian l-Adic Representations and Elliptic Curves. Benjamin, New York (1968). xvi+177 pp. Google Scholar
  59. 59.
    Shahidi, F.: On certain L-functions. Am. J. Math. 103(2), 297–355 (1981) CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Shimura, G.: Confluent hypergeometric functions on tube domains. Math. Ann. 260(3), 269–302 (1982) CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Shimura, G.: Eisenstein series and zeta functions on symplectic groups. Invent. Math. 119(3), 539–584 (1995) CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Shimura, G.: Euler Products and Eisenstein Series. CBMS Regional Conference Series in Mathematics, vol. 93. Am. Math. Soc., Providence (1997) MATHGoogle Scholar
  63. 63.
    Shimura, G.: Arithmeticity in the Theory of Automorphic Forms. Mathematical Surveys and Monographs, vol. 82. Am. Math. Soc., Providence (2000). x+302 pp. MATHGoogle Scholar
  64. 64.
    Skinner, C.: Galois representations associated with unitary groups over Q. Algebra Number Theory 6–8, 1697–1717 (2012). CrossRefMathSciNetGoogle Scholar
  65. 65.
    Skinner, C.M., Urban, E.: Sur les déformations p-adiques des formes de Saito-Kurokawa. C. R. Math. Acad. Sci. Paris 335(7), 581–586 (2002) CrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    Skinner, C., Urban, E.: Sur les déformations p-adiques de certaines représentations automorphes. J. Inst. Math. Jussieu 5(4), 629–698 (2006) CrossRefMATHMathSciNetGoogle Scholar
  67. 67.
    Skinner, C., Wiles, A.: Residually reducible representations and modular forms. Publ. Math. IHÉS 89, 5–126 (1999) CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Stevens, G.: The cuspidal subgroup and special values of L-functions. Trans. Am. Math. Soc. 291(2), 519–550 (1985) MATHMathSciNetGoogle Scholar
  69. 69.
    Taylor, R.: Galois representations associated with Siegel modular forms of low weight. Duke Math. J. 63(2), 281–332 (1991) CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995) CrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    Tilouine, J., Urban, E.: Several-variable p-adic families of Siegel-Hilbert cusp eigensystems and their Galois representations. Ann. Sci. Éc. Norm. Super. (4) 32(4), 499–574 (1999) MATHMathSciNetGoogle Scholar
  72. 72.
    Urban, E.: Groupes de Selmer et fonctions L p-adiques pour les représentations modulaires adjointes. Preprint Google Scholar
  73. 73.
    Vatsal, V.: Special values of anticyclotomic L-functions. Duke Math. J. 116(2), 219–261 (2003) CrossRefMATHMathSciNetGoogle Scholar
  74. 74.
    Vishik, M.: Nonarchemedean measures connected with Dirichlet series. Math. USSR Sb. 28, 216–228 (1976) CrossRefGoogle Scholar
  75. 75.
    Wallach, N.: Real Reductive Groups II. Pure and Applied Mathematics, vol. 132-II. Academic Press, Boston (1992) MATHGoogle Scholar
  76. 76.
    Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. Math. 131 (1990) Google Scholar
  77. 77.
    Wiles, A.: Elliptic curves and Fermat’s Last Theorem. Ann. Math. 141, 443–551 (1995) CrossRefMATHMathSciNetGoogle Scholar
  78. 78.
    Zhang, B.: Fourier-Jacobi coefficients of Eisenstein series on unitary groups. PhD thesis, Columbia University (2007) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Institut Mathématiques de JussieuParisFrance
  3. 3.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations