Inventiones mathematicae

, Volume 194, Issue 1, pp 119–145 | Cite as

The Tate conjecture for K3 surfaces over finite fields



Artin’s conjecture states that supersingular K3 surfaces over finite fields have Picard number 22. In this paper, we prove Artin’s conjecture over fields of characteristic p≥5. This implies Tate’s conjecture for K3 surfaces over finite fields of characteristic p≥5. Our results also yield the Tate conjecture for divisors on certain holomorphic symplectic varieties over finite fields, with some restrictions on the characteristic. As a consequence, we prove the Tate conjecture for cycles of codimension 2 on cubic fourfolds over finite fields of characteristic p≥5.

Mathematics Subject Classification (2010)

14C22 14C25 14G15 14J28 


  1. 1.
    André, Y.: On the Shafarevich and Tate conjectures for hyper-Kähler varieties. Math. Ann. 305(2), 205–248 (1996) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Andreatta, F., Iovita, A.: Comparison isomorphisms for formal schemes. To appear in J. Inst. Math. Jussieu, available at
  3. 3.
    Artin, M.: Supersingular K3 surfaces. Ann. Sci. École Norm. Super. (4) 7, 543–567 (1974) MATHMathSciNetGoogle Scholar
  4. 4.
    Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983) MATHMathSciNetGoogle Scholar
  5. 5.
    Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985) MATHMathSciNetGoogle Scholar
  6. 6.
    Bogomolov, F.A.: Hamiltonian Kählerian manifolds. Dokl. Akad. Nauk SSSR 243(5), 1101–1104 (1978) MathSciNetGoogle Scholar
  7. 7.
    Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Borcherds, R.E.: The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97(2), 219–233 (1999) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bourbaki, N.: Éléments de Mathématique. Algèbre. Chapitre 9. Springer, Berlin (2007). Reprint of the 1959 original MATHGoogle Scholar
  10. 10.
    Breuil, C., Messing, W.: Torsion étale and crystalline cohomologies. Astérisque 279, 81–124 (2002). Cohomologies p-adiques et applications arithmétiques, II MathSciNetGoogle Scholar
  11. 11.
    Chai, C.-L., Oort, F.: Moduli of Abelian varieties and p-divisible groups. In: Arithmetic Geometry. Clay Math. Proc., vol. 8, pp. 441–536. Am. Math. Soc., Providence (2009) Google Scholar
  12. 12.
    Charles, F., Schnell, C.: Notes on absolute Hodge classes. Preprint Google Scholar
  13. 13.
    de Jong, J.: On a result of Artin. Preprint Google Scholar
  14. 14.
    Deligne, P.: Relèvement des surfaces K3 en caractéristique nulle. In: Algebraic Surfaces, Orsay, 1976–1978. Lecture Notes in Math., vol. 868, pp. 58–79. Springer, Berlin (1981). Prepared for publication by Luc Illusie Google Scholar
  15. 15.
    Deligne, P.: La conjecture de Weil pour les surfaces K3. Invent. Math. 15, 206–226 (1972) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Deligne, P.: Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. In: Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2. Proc. Sympos. Pure Math., vol. XXXIII, pp. 247–289. Am. Math. Soc., Providence (1979) Google Scholar
  17. 17.
    Deligne, P., Illusie, L.: Relèvements modulo p 2 et décomposition du complexe de de Rham. Invent. Math. 89(2), 247–270 (1987) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Faltings, G., Chai, C.-L.: Degeneration of Abelian Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22. Springer, Berlin (1990). With an appendix by David Mumford CrossRefMATHGoogle Scholar
  19. 19.
    Fogarty, J.: Algebraic families on an algebraic surface. Am. J. Math. 90, 511–521 (1968) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Fontaine, J.-M., Messing, W.: p-adic periods and p-adic étale cohomology. In: Current Trends in Arithmetical Algebraic Geometry, Arcata, Calif., 1985. Contemp. Math., vol. 67, pp. 179–207. Am. Math. Soc., Providence (1987) CrossRefGoogle Scholar
  21. 21.
    Huybrechts, D.: Compact hyper-Kähler manifolds: basic results. Invent. Math. 135(1), 63–113 (1999) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Katz, N.M.: Nilpotent connections and the monodromy theorem: applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math. 39, 175–232 (1970) CrossRefMATHGoogle Scholar
  23. 23.
    Maulik, D., Lieblich, M., Snowden, A.: Finiteness of K3 surfaces and the Tate conjecture. arXiv:1107.1221
  24. 24.
    Maulik, D.: Supersingular K3 surfaces for large primes (2012). arXiv:1203.2889
  25. 25.
    Messing, W.: The Crystals Associated to Barsotti-Tate Groups: with Applications to Abelian Schemes. Lecture Notes in Mathematics, vol. 264. Springer, Berlin (1972) MATHGoogle Scholar
  26. 26.
    Nygaard, N., Ogus, A.: Tate’s conjecture for K3 surfaces of finite height. Ann. Math. (2) 122(3), 461–507 (1985) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Nygaard, N.O.: The Tate conjecture for ordinary K3 surfaces over finite fields. Invent. Math. 74(2), 213–237 (1983) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    O’Grady, K.G.: Involutions and linear systems on holomorphic symplectic manifolds. Geom. Funct. Anal. 15(6), 1223–1274 (2005) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Ogus, A.: Singularities in the height strata in the moduli of K3 surfaces. Preprint Google Scholar
  30. 30.
    Ogus, A.: Supersingular K3 crystals. In: Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II. Astérisque, vol. 64, pp. 3–86. Soc. Math. France, Paris (1979) Google Scholar
  31. 31.
    Oort, F.: Subvarieties of moduli spaces. Invent. Math. 24, 95–119 (1974) CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Ramón Marí, J.J.: On the Hodge conjecture for products of certain surfaces. Collect. Math. 59(1), 1–26 (2008) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Rizov, J.: Moduli stacks of polarized K3 surfaces in mixed characteristic. Serdica Math. J. 32(2–3), 131–178 (2006) MATHMathSciNetGoogle Scholar
  34. 34.
    Rizov, J.: Kuga-Satake abelian varieties of K3 surfaces in mixed characteristic. J. Reine Angew. Math. 648, 13–67 (2010) MATHMathSciNetGoogle Scholar
  35. 35.
    Tate, J.T.: Algebraic cycles and poles of zeta functions. In: Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), pp. 93–110. Harper & Row, New York (1965) Google Scholar
  36. 36.
    Tian, G.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. In: Mathematical Aspects of String Theory, San Diego, Calif., 1986. Adv. Ser. Math. Phys., vol. 1, pp. 629–646. World Scientific Publishing, Singapore (1987) CrossRefGoogle Scholar
  37. 37.
    Todorov, A.N.: The Weil-Petersson geometry of the moduli space of SU(n≥3) (Calabi-Yau) manifolds. I. Commun. Math. Phys. 126(2), 325–346 (1989) CrossRefMATHGoogle Scholar
  38. 38.
    Zarhin, Ju.G.: A remark on endomorphisms of abelian varieties over function fields of finite characteristic. Izv. Akad. Nauk SSSR, Ser. Mat. 38, 471–474 (1974) MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.IRMAR–UMR 6625 du CNRSUniversité de Rennes 1Rennes CedexFrance

Personalised recommendations