Advertisement

Inventiones mathematicae

, Volume 193, Issue 1, pp 229–247 | Cite as

Tensor tomography on surfaces

  • Gabriel P. Paternain
  • Mikko Salo
  • Gunther Uhlmann
Article

Abstract

We show that on simple surfaces the geodesic ray transform acting on solenoidal symmetric tensor fields of arbitrary order is injective. This solves a long standing inverse problem in the two-dimensional case.

Keywords

Tensor Field Carleman Estimate Simple Surface Commutator Formula Canonical Line Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

M.S. was supported in part by the Academy of Finland, and G.U. was partly supported by NSF and a Rothschild Distinguished Visiting Fellowship at the Isaac Newton Institute. The authors would like to express their gratitude to the Newton Institute and the organizers of the program on Inverse Problems in 2011 where this work was carried out. They would also like to thank the referees for their constructive and useful comments.

References

  1. 1.
    Anikonov, Yu., Romanov, V.: On uniqueness of determination of a form of first degree by its integrals along geodesics. J. Inverse Ill-Posed Probl. 5, 467–480 (1997) MathSciNetGoogle Scholar
  2. 2.
    Dairbekov, N.S.: Integral geometry problem for nontrapping manifolds. Inverse Probl. 22, 431–445 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dos Santos Ferreira, D., Kenig, C.E., Salo, M., Uhlmann, G.: Limiting Carleman weights and anisotropic inverse problems. Invent. Math. 178, 119–171 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994). Reprint of the 1978 original zbMATHGoogle Scholar
  5. 5.
    Guillemin, V., Kazhdan, D.: Some inverse spectral results for negatively curved 2-manifolds. Topology 19, 301–312 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators. Classics in Mathematics. Springer, Berlin (2009). Reprint of the 1994 edition zbMATHCrossRefGoogle Scholar
  7. 7.
    Ivanov, S.: Volume comparison via boundary distances. In: Proceedings of the International Congress of Mathematicians, New Delhi, vol. II, pp. 769–784 (2010) Google Scholar
  8. 8.
    Michel, R.: Sur la rigidité imposée par la longueur des géodésiques. Invent. Math. 65, 71–83 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Mukhometov, R.G.: The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry. Dokl. Akad. Nauk SSSR 232(1), 32–35 (1977) (Russian) MathSciNetGoogle Scholar
  10. 10.
    Paternain, G.P.: Transparent connections over negatively curved surfaces. J. Mod. Dyn. 3, 311–333 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Paternain, G.P., Salo, M., Uhlmann, G.: The attenuated ray transform for connections and Higgs fields. Geom. Funct. Anal. 22, 1460–1489 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Pestov, L.: Well-Posedness Questions of the Ray Tomography Problems. Siberian Science Press, Novosibirsk (2003) (Russian) Google Scholar
  13. 13.
    Pestov, L., Sharafutdinov, V.A.: Integral geometry of tensor fields on a manifold of negative curvature. Sib. Math. J. 29, 427–441 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Pestov, L., Uhlmann, G.: On characterization of the range and inversion formulas for the geodesic X-ray transform. Int. Math. Res. Not. 4331–4347 (2004) Google Scholar
  15. 15.
    Pestov, L., Uhlmann, G.: Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math. 161, 1089–1106 (2005) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Salo, M., Uhlmann, G.: The attenuated ray transform on simple surfaces. J. Differ. Geom. 88, 161–187 (2011) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. Inverse and Ill-Posed Problems Series. VSP, Utrecht (1994) CrossRefGoogle Scholar
  18. 18.
    Sharafutdinov, V.A.: Integral geometry of a tensor field on a surface of revolution. Sib. Math. J. 38, 603–620 (1997) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sharafutdinov, V.A.: A problem in integral geometry in a nonconvex domain. Sib. Math. J. 43, 1159–1168 (2002) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sharafutdinov, V.A.: Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds. J. Geom. Anal. 17, 147–187 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sharafutdinov, V.A., Skokan, M., Uhlmann, G.: Regularity of ghosts in tensor tomography. J. Geom. Anal. 15, 517–560 (2005) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Singer, I.M., Thorpe, J.A.: Lecture Notes on Elementary Topology and Geometry. Undergraduate Texts in Mathematics. Springer, New York (1976). Reprint of the 1967 edition zbMATHCrossRefGoogle Scholar
  23. 23.
    Stefanov, P., Uhlmann, G.: Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J. 123, 445–467 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Stefanov, P., Uhlmann, G.: Boundary and lens rigidity, tensor tomography and analytic microlocal analysis. In: Aoki, T., Majima, H., Katei, Y., Tose, N. (eds.) Algebraic Analysis of Differential Equations, Festschrift in Honor of Takahiro Kawai, pp. 275–293 (2008) CrossRefGoogle Scholar
  25. 25.
    Stefanov, P., Uhlmann, G.: Linearizing non-linear inverse problems and its applications to inverse backscattering. J. Funct. Anal. 256, 2842–2866 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Thorbergsson, G.: Closed geodesics on non-compact Riemannian manifolds. Math. Z. 159, 249–258 (1978) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gabriel P. Paternain
    • 1
  • Mikko Salo
    • 2
  • Gunther Uhlmann
    • 3
    • 4
  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeUK
  2. 2.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland
  3. 3.Department of MathematicsUniversity of WashingtonSeattleUSA
  4. 4.Department of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations