Inventiones mathematicae

, Volume 192, Issue 1, pp 71–81 | Cite as

On the \(\partial\overline{\partial}\)-Lemma and Bott-Chern cohomology

Article

Abstract

On a compact complex manifold X, we prove a Frölicher-type inequality for Bott-Chern cohomology and we show that the equality holds if and only if X satisfies the \(\partial\overline{\partial}\)-Lemma.

Keywords

Manifold Compact Complex Manifold Hodge Theory Dolbeault Cohomology Small Deforma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angella, D.: The cohomologies of the Iwasawa manifold and of its small deformations. J. Geom. Anal. doi: 10.1007/s12220-011-9291-z (2011, to appear) MATHGoogle Scholar
  2. 2.
    Bismut, J.-M.: Hypoelliptic Laplacian and Bott-Chern cohomology. Preprint, Orsay (2011) Google Scholar
  3. 3.
    Deligne, P., Griffiths, Ph., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Frölicher, A.: Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Nat. Acad. Sci. USA 41(9), 641–644 (1955) MATHCrossRefGoogle Scholar
  5. 5.
    Fujiki, A.: On automorphism groups of compact Kähler manifolds. Invent. Math. 44(3), 225–258 (1978) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10(1), 85–112 (1975) MATHGoogle Scholar
  7. 7.
    Schweitzer, M.: Autour de la cohomologie de Bott-Chern. arXiv:0709.3528v1 [math.AG]
  8. 8.
    Tseng, L.-S., Yau, S.-T.: Generalized cohomologies and supersymmetry. arXiv:1111.6968v1 [hep-th]
  9. 9.
    Varouchas, J.: Proprietés cohomologiques d’une classe de variétés analytiques complexes compactes. In: Séminaire d’analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984. Lecture Notes in Math., vol. 1198, pp. 233–243. Springer, Berlin (1986) Google Scholar
  10. 10.
    Voisin, C.: Théorie de Hodge et Géométrie Algébrique Complexe. Cours Spécialisés, vol. 10. Société Mathématique de France, Paris (2002) Google Scholar
  11. 11.
    Wu, C.-C.: On the geometry of superstrings with torsion. Ph.D. Thesis, Harvard University, Proquest LLC, Ann Arbor, MI (2006) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Dipartimento di Matematica “Leonida Tonelli”Università di PisaPisaItaly
  2. 2.Dipartimento Di MatematicaUniversità di ParmaParmaItaly

Personalised recommendations