Global existence of weak solutions to the FENE dumbbell model of polymeric flows
- 920 Downloads
- 30 Citations
Abstract
Systems coupling fluids and polymers are of great interest in many branches of sciences. One of the most classical models to describe them is the FENE (Finite Extensible Nonlinear Elastic) dumbbell model. We prove global existence of weak solutions to the FENE dumbbell model of polymeric flows. The main difficulty is the passage to the limit in a nonlinear term that has no obvious compactness properties. The proof uses many weak convergence techniques. In particular it is based on the control of the propagation of strong convergence of some well chosen quantity by studying a transport equation for its defect measure. In addition, this quantity controls a rescaled defect measure of the gradient of the velocity.
Mathematics Subject Classification
35Q30 82C31 76A05Preview
Unable to display preview. Download preview PDF.
References
- 1.Alexandre, R., Villani, C.: On the Boltzmann equation for long-range interactions. Commun. Pure Appl. Math. 55(1), 30–70 (2002) MathSciNetMATHCrossRefGoogle Scholar
- 2.Amann, H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2(1), 16–98 (2000) MathSciNetMATHCrossRefGoogle Scholar
- 3.Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2), 227–260 (2004) MathSciNetMATHCrossRefGoogle Scholar
- 4.Arnold, A., Carrillo, J.A., Manzini, C.: Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci. 8(3), 763–782 (2010) MathSciNetMATHGoogle Scholar
- 5.Ball, J.M., Murat, F.: Remarks on Chacon’s biting lemma. Proc. Am. Math. Soc. 107(3), 655–663 (1989) MathSciNetMATHGoogle Scholar
- 6.Barrett, J.W., Süli, E.: Existence of global weak solutions to some regularized kinetic models for dilute polymers. Multiscale Model. Simul. 6(2), 506–546 (2007) (electronic) MathSciNetMATHCrossRefGoogle Scholar
- 7.Barrett, J.W., Süli, E.: Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Models Methods Appl. Sci. 18(6), 935–971 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 8.Barrett, J.W., Süli, E.: Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains. Math. Models Methods Appl. Sci. 21(6), 1211–1289 (2011) MathSciNetMATHCrossRefGoogle Scholar
- 9.Barrett, J.W., Süli, E.: Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type bead-spring chains. Math. Models Methods Appl. Sci. 22(5) (2012, to appear) Google Scholar
- 10.Barrett, J.W., Schwab, C., Süli, E.: Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15(6), 939–983 (2005) MathSciNetMATHCrossRefGoogle Scholar
- 11.Bird, R.B., Amstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1. Wiley, New York (1977) Google Scholar
- 12.Bird, R.B., Curtiss, C., Amstrong, R., Hassager, O.: Dynamics of Polymeric Liquids. Kinetic Theory, vol. 2. Wiley, New York (1987) Google Scholar
- 13.Chemin, J.-Y.: Fluides parfaits incompressibles. Astérisque 230, 177 (1995) MathSciNetGoogle Scholar
- 14.Chemin, J.-Y., Masmoudi, N.: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33(1), 84–112 (2001) (electronic) MathSciNetMATHCrossRefGoogle Scholar
- 15.Chupin, L.: The FENE model for viscoelastic thin film flows. Methods Appl. Anal. 16(2), 217–261 (2009) MathSciNetMATHGoogle Scholar
- 16.Chupin, L.: Fokker-Planck equation in bounded domain. Ann. Inst. Fourier (Grenoble) 60(1), 217–255 (2010) MathSciNetMATHCrossRefGoogle Scholar
- 17.Constantin, P.: Nonlinear Fokker-Planck Navier-Stokes systems. Commun. Math. Sci. 3(4), 531–544 (2005) MathSciNetMATHGoogle Scholar
- 18.Constantin, P., Masmoudi, N.: Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. Commun. Math. Phys. 278(1), 179–191 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 19.Constantin, P., Sun, W.: Remarks on Oldroyd-B and related complex fluid models. Preprint, CMS (2010, to appear) Google Scholar
- 20.Constantin, P., Fefferman, C., Titi, E.S., Zarnescu, A.: Regularity of coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems. Commun. Math. Phys. 270(3), 789–811 (2007) MathSciNetMATHCrossRefGoogle Scholar
- 21.Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616, 15–46 (2008) MathSciNetMATHGoogle Scholar
- 22.Degond, P., Liu, H.: Kinetic models for polymers with inertial effects. Netw. Heterog. Media 4(4), 625–647 (2009) MathSciNetMATHCrossRefGoogle Scholar
- 23.Degond, P., Lemou, M., Picasso, M.: Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62(5), 1501–1519 (2002) (electronic) MathSciNetMATHCrossRefGoogle Scholar
- 24.Desjardins, B.: Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations. Differ. Integral Equ. 10(3), 577–586 (1997) MathSciNetMATHGoogle Scholar
- 25.DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130(2), 321–366 (1989) MathSciNetMATHCrossRefGoogle Scholar
- 26.DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989) MathSciNetMATHCrossRefGoogle Scholar
- 27.Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1986) Google Scholar
- 28.Du, Q., Liu, C., Yu, P.: FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4(3), 709–731 (2005) (electronic) MathSciNetMATHCrossRefGoogle Scholar
- 29.Li, W.E.T., Zhang, P.: Well-posedness for the dumbbell model of polymeric fluids. Commun. Math. Phys. 248(2), 409–427 (2004) MATHGoogle Scholar
- 30.Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) Google Scholar
- 31.Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and Its Applications, vol. 26. Oxford University Press, Oxford (2004) MATHGoogle Scholar
- 32.Fernández-Cara, E., Guillén, F., Ortega, R.R.: Some theoretical results for viscoplastic and dilatant fluids with variable density. Nonlinear Anal. 28(6), 1079–1100 (1997) MathSciNetMATHCrossRefGoogle Scholar
- 33.Fernández-Cara, E., Guillén, F., Ortega, R.R.: Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 26(1), 1–29 (1998) MATHGoogle Scholar
- 34.Fernández-Cara, E., Guillén, F., Ortega, R.R.: The mathematical analysis of viscoelastic fluids of the Oldroyd kind (2000) Google Scholar
- 35.Gallez, X., Halin, P., Lielens, G., Keunings, R., Legat, V.: The adaptive Lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows. Comput. Methods Appl. Mech. Eng. 180(3–4), 345–364 (1999) MathSciNetMATHCrossRefGoogle Scholar
- 36.Giga, Y., Sohr, H.: Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102(1), 72–94 (1991) MathSciNetMATHCrossRefGoogle Scholar
- 37.Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I and II. Development of a general formalism. Phys. Rev. E (3) 56(6), 6620–6655 (1997) MathSciNetCrossRefGoogle Scholar
- 38.Guillopé, C., Saut, J.-C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15(9), 849–869 (1990) MathSciNetMATHCrossRefGoogle Scholar
- 39.Guillopé, C., Saut, J.-C.: Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 24(3), 369–401 (1990) MATHGoogle Scholar
- 40.Hardy, G.H.: Notes on some points in the integral calculus, LX. an inequality between integrals. Messenger Math. 54, 150–156 (1925) Google Scholar
- 41.Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Reprint of the 1952 edn. Google Scholar
- 42.He, L., Zhang, P.: L 2 decay of solutions to a micro-macro model for polymeric fluids near equilibrium. SIAM J. Math. Anal. 40(5), 1905–1922 (2008/2009) MathSciNetCrossRefGoogle Scholar
- 43.Jourdain, B., Lelièvre, T.: Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids. In: Probabilistic Methods in Fluids, pp. 205–223. World Scientific, River Edge (2003) Google Scholar
- 44.Jourdain, B., Lelièvre, T., Le Bris, C.: Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209(1), 162–193 (2004) MathSciNetMATHCrossRefGoogle Scholar
- 45.Jourdain, B., Le Bris, C., Lelièvre, T., Otto, F.: Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181(1), 97–148 (2006) MathSciNetMATHCrossRefGoogle Scholar
- 46.Keunings, R.: Simulation of viscoelastic fluid flow. In: Tucker, C.L. III (ed.) Fundamentals of Computer Modeling for Polymer Processing. Hanser Verlag, Munich (1989) Google Scholar
- 47.Keunings, R.: On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newton. Fluid Mech. 86, 85–100 (1997) CrossRefGoogle Scholar
- 48.Kreml, O., Pokorný, M.: On the local strong solutions for the FENE dumbbell model. Discrete Contin. Dyn. Syst. Ser. S 3(2), 311–324 (2010) MathSciNetMATHCrossRefGoogle Scholar
- 49.Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality. Vydavatelský Servis, Plzeň (2007). About its history and some related results MATHGoogle Scholar
- 50.Le Bris, C., Lelièvre, T.: Multiscale modelling of complex fluids: a mathematical initiation. In: Multiscale Modeling and Simulation in Science. Lect. Notes Comput. Sci. Eng., vol. 66, pp. 49–137. Springer, Berlin (2009) CrossRefGoogle Scholar
- 51.Lei, Z., Zhou, Y.: Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal. 37(3), 797–814 (2005) (electronic) MathSciNetMATHCrossRefGoogle Scholar
- 52.Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188(3), 371–398 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 53.Lei, Z., Masmoudi, N., Zhou, Y.: Remarks on the blowup criteria for Oldroyd models. J. Differ. Equ. 248(2), 328–341 (2010) MathSciNetMATHCrossRefGoogle Scholar
- 54.Leray, J.: Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933) MathSciNetMATHGoogle Scholar
- 55.Leray, J.: Essai sur les mouvements plans d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934) MathSciNetMATHCrossRefGoogle Scholar
- 56.Li, T., Zhang, P.: Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5(1), 1–51 (2007) MathSciNetMATHGoogle Scholar
- 57.Lin, F.-H., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58(11), 1437–1471 (2005) MathSciNetMATHCrossRefGoogle Scholar
- 58.Lin, F.-H., Liu, C., Zhang, P.: On a micro-macro model for polymeric fluids near equilibrium. Commun. Pure Appl. Math. 60(6), 838–866 (2007) MathSciNetMATHCrossRefGoogle Scholar
- 59.Lin, F.-H., Zhang, P., Zhang, Z.: On the global existence of smooth solution to the 2-D FENE dumbbell model. Commun. Math. Phys. 277(2), 531–553 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 60.Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications MATHGoogle Scholar
- 61.Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications MATHGoogle Scholar
- 62.Lions, P.-L., Masmoudi, N.: On a free boundary barotropic model. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16(3), 373–410 (1999) MathSciNetMATHCrossRefGoogle Scholar
- 63.Lions, P.-L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math., Ser. B 21(2), 131–146 (2000) MathSciNetMATHCrossRefGoogle Scholar
- 64.Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. II. Arch. Ration. Mech. Anal. 158(3), 195–211 (2001) MathSciNetCrossRefGoogle Scholar
- 65.Lions, P.-L., Masmoudi, N.: Global existence of weak solutions to some micro-macro models. C. R. Math. Acad. Sci. Paris 345(1), 15–20 (2007) MathSciNetMATHCrossRefGoogle Scholar
- 66.Liu, C., Liu, H.: Boundary conditions for the microscopic FENE models. SIAM J. Appl. Math. 68(5), 1304–1315 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 67.Liu, H., Shin, J.: Global well-posedness for the microscopic FENE model with a sharp boundary condition. Preprint (2010) Google Scholar
- 68.Masmoudi, N.: Well-posedness for the FENE dumbbell model of polymeric flows. Commun. Pure Appl. Math. 61(12), 1685–1714 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 69.Masmoudi, N.: Global existence of weak solutions to macroscopic models of polymeric flows. J. Math. Pures Appl. (9) 96(5), 502–520 (2011) MathSciNetMATHGoogle Scholar
- 70.Masmoudi, N.: Regularity of solutions to the FENE model in the polymer elongation variable R (2011, in preparation) Google Scholar
- 71.Masmoudi, N.: Zero diffusion limit in the FENE model of polymeric flows (2011, in preparation) Google Scholar
- 72.Masmoudi, N., Zhang, P., Zhang, Z.: Global well-posedness for 2D polymeric fluid models and growth estimate. Physica D 237(10–12), 1663–1675 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 73.Mischler, S.: Kinetic equations with Maxwell boundary conditions. Ann. Sci. Éc. Norm. Supér. (4) 43(5), 719–760 (2010) MathSciNetMATHGoogle Scholar
- 74.Öttinger, H.C.: Stochastic Processes in Polymeric Fluids. Springer, Berlin (1996). Tools and examples for developing simulation algorithms MATHCrossRefGoogle Scholar
- 75.Otto, F., Tzavaras, A.E.: Continuity of velocity gradients in suspensions of rod-like molecules. Commun. Math. Phys. 277(3), 729–758 (2008) MathSciNetMATHCrossRefGoogle Scholar
- 76.Owens, R.G., Phillips, T.N.: Computational Rheology. Imperial College Press, London (2002) MATHCrossRefGoogle Scholar
- 77.Renardy, M.: An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22(2), 313–327 (1991) MathSciNetMATHCrossRefGoogle Scholar
- 78.Renardy, M.: Mathematical Analysis of Viscoelastic Flows. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 73. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000) MATHCrossRefGoogle Scholar
- 79.Schonbek, M.E.: Existence and decay of polymeric flows. SIAM J. Math. Anal. 41(2), 564–587 (2009) MathSciNetMATHCrossRefGoogle Scholar
- 80.Solonnikov, V.A.: Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations. Transl. Am. Math. Soc. 75, 1–116 (1968) MATHGoogle Scholar
- 81.Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1995) MATHCrossRefGoogle Scholar
- 82.Zhang, H., Zhang, P.: Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181(2), 373–400 (2006) MathSciNetMATHCrossRefGoogle Scholar
- 83.Zhang, L., Zhang, H., Zhang, P.: Global existence of weak solutions to the regularized Hookean dumbbell model. Commun. Math. Sci. 6(1), 85–124 (2008) MathSciNetGoogle Scholar