Inventiones mathematicae

, Volume 190, Issue 3, pp 647–697 | Cite as

Eigenvectors and eigenvalues in a random subspace of a tensor product

Article

Abstract

Given two positive integers n and k and a parameter t∈(0,1), we choose at random a vector subspace Vn⊂ℂk⊗ℂn of dimension Ntnk. We show that the set of k-tuples of singular values of all unit vectors in Vn fills asymptotically (as n tends to infinity) a deterministic convex set Kk,t that we describe using a new norm in ℝk.

Our proof relies on free probability, random matrix theory, complex analysis and matrix analysis techniques. The main result comes together with a law of large numbers for the singular value decomposition of the eigenvectors corresponding to large eigenvalues of a random truncation of a matrix with high eigenvalue degeneracy.

Mathematics Subject Classification (2000)

15A52 52A22 46L54 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhieser, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner, New York (1965) Google Scholar
  2. 2.
    Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010) MATHGoogle Scholar
  3. 3.
    Belinschi, S.T.: A note on regularity for free convolutions. Ann. Inst. Henri Poincaré B, Probab. Stat. 42(3), 635–648 (2006) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Belinschi, S.T., Bercovici, H.: Atoms and regularity for measures in a partially defined free convolution semigroup. Math. Z. 248, 665–674 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Belinschi, S.T., Bercovici, H.: Partially defined semigroups relative to multiplicative free convolution. Int. Math. Res. Not. 2, 65–101 (2005) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benaych-Georges, F.: Eigenvectors of Wigner matrices: universality of global fluctuations. arXiv:1104.1219
  7. 7.
    Benaych-Georges, F., Rao, R.: The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227(1), 494–521 (2011) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42(3), 733–773 (1993) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bercovici, H., Voiculescu, D.: Superconvergence to the central limit and failure of Cramer’s Theorem for free random variables. Probab. Theory Relat. Fields 103, 215–222 (1995) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997) CrossRefGoogle Scholar
  11. 11.
    Biane, P.: Processes with free increments. Math. Z. 227(1), 143–174 (1998) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chirka, E.M.: Complex Analytic Sets. Kluwer Academic, Dordrecht (1989) MATHCrossRefGoogle Scholar
  13. 13.
    Collingwood, E.F., Lohwater, A.J.: The Theory of Cluster Sets. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 56. Cambridge University Press, Cambridge (1966) MATHCrossRefGoogle Scholar
  14. 14.
    Collins, B., Male, C.: The strong asymptotic freeness of Haar and deterministic matrices. arXiv:1105.4345
  15. 15.
    Collins, B., Nechita, I.: Random quantum channels II: Entanglement of random subspaces, Renyi entropy estimates and additivity problems. Adv. Math. 226, 1181–1201 (2011) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Collins, B., Śniady, P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264(3), 773–795 (2006) MATHCrossRefGoogle Scholar
  17. 17.
    Defosseux, M.: Orbit measures, random matrix theory and interlaced determinantal processes. Ann. Inst. Henri Poincaré B, Probab. Stat. 46(1), 209–249 (2010) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981) MATHGoogle Scholar
  19. 19.
    Haagerup, U., Thorbjørnsen, S.: A new application of random matrices: \(\mathrm{Ext}(C^{*}_{\mathrm{red}} (F_{2}))\) is not a group. Ann. Math. (2) 162(2), 711–775 (2005) MATHCrossRefGoogle Scholar
  20. 20.
    Male, C.: The norm of polynomials in large random and deterministic matrices. With an Appendix by D. Shlyakhtenko. arXiv:1004.4155. Probab. Theory Relat. Fields. doi:10.1007/s00440-011-0375-2
  21. 21.
    Metcalfe, T.: Ph.D. dissertation Google Scholar
  22. 22.
    Nadler, B.: Finite sample approximation results for principal component analysis: a matrix perturbation approach. Ann. Stat. 36(6), 2791–2817 (2008) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Nica, A., Speicher, R.: On the multiplication of free n-tuples of noncommutative random variables. Am. J. Math. 118, 799–837 (1996) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. Cambridge Univ. Press, Cambridge (2006) MATHCrossRefGoogle Scholar
  25. 25.
    Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970), xviii+451 pp. MATHGoogle Scholar
  26. 26.
    Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993) MATHCrossRefGoogle Scholar
  27. 27.
    Voiculescu, D.: Addition of certain noncommuting random variables. J. Funct. Anal. 66, 323–346 (1986) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Voiculescu, D.: Multiplication of certain noncommuting random variables. J. Oper. Theory (1987) Google Scholar
  29. 29.
    Voiculescu, D.: The analogues of entropy and of Fisher’s information measure in free probability theory. 1. Commun. Math. Phys. 155, 71–92 (1993) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Voiculescu, D.V., Dykema, K.J., Nica, A.: Free Random Variables. AMS, Providence (1992) MATHGoogle Scholar
  31. 31.
    Webster, R.J.: Convexity. Oxford University Press, New York (1994) MATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Serban Belinschi
    • 1
    • 2
  • Benoît Collins
    • 3
    • 4
  • Ion Nechita
    • 3
  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  2. 2.Department of Mathematics & StatisticsUniversity of SaskatchewanSaskatoonCanada
  3. 3.Département de Mathématique et StatistiqueUniversité d’OttawaOttawaCanada
  4. 4.CNRSInstitut Camille Jordan Université Lyon 1VilleurbanneFrance

Personalised recommendations