Inventiones mathematicae

, Volume 190, Issue 3, pp 647–697 | Cite as

Eigenvectors and eigenvalues in a random subspace of a tensor product

  • Serban Belinschi
  • Benoît Collins
  • Ion Nechita


Given two positive integers n and k and a parameter t∈(0,1), we choose at random a vector subspace V n ⊂ℂ k ⊗ℂ n of dimension Ntnk. We show that the set of k-tuples of singular values of all unit vectors in V n fills asymptotically (as n tends to infinity) a deterministic convex set K k,t that we describe using a new norm in ℝ k .

Our proof relies on free probability, random matrix theory, complex analysis and matrix analysis techniques. The main result comes together with a law of large numbers for the singular value decomposition of the eigenvectors corresponding to large eigenvalues of a random truncation of a matrix with high eigenvalue degeneracy.

Mathematics Subject Classification (2000)

15A52 52A22 46L54 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhieser, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner, New York (1965) Google Scholar
  2. 2.
    Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010) zbMATHGoogle Scholar
  3. 3.
    Belinschi, S.T.: A note on regularity for free convolutions. Ann. Inst. Henri Poincaré B, Probab. Stat. 42(3), 635–648 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Belinschi, S.T., Bercovici, H.: Atoms and regularity for measures in a partially defined free convolution semigroup. Math. Z. 248, 665–674 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Belinschi, S.T., Bercovici, H.: Partially defined semigroups relative to multiplicative free convolution. Int. Math. Res. Not. 2, 65–101 (2005) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benaych-Georges, F.: Eigenvectors of Wigner matrices: universality of global fluctuations. arXiv:1104.1219
  7. 7.
    Benaych-Georges, F., Rao, R.: The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227(1), 494–521 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42(3), 733–773 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bercovici, H., Voiculescu, D.: Superconvergence to the central limit and failure of Cramer’s Theorem for free random variables. Probab. Theory Relat. Fields 103, 215–222 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997) CrossRefGoogle Scholar
  11. 11.
    Biane, P.: Processes with free increments. Math. Z. 227(1), 143–174 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chirka, E.M.: Complex Analytic Sets. Kluwer Academic, Dordrecht (1989) zbMATHCrossRefGoogle Scholar
  13. 13.
    Collingwood, E.F., Lohwater, A.J.: The Theory of Cluster Sets. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 56. Cambridge University Press, Cambridge (1966) zbMATHCrossRefGoogle Scholar
  14. 14.
    Collins, B., Male, C.: The strong asymptotic freeness of Haar and deterministic matrices. arXiv:1105.4345
  15. 15.
    Collins, B., Nechita, I.: Random quantum channels II: Entanglement of random subspaces, Renyi entropy estimates and additivity problems. Adv. Math. 226, 1181–1201 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Collins, B., Śniady, P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264(3), 773–795 (2006) zbMATHCrossRefGoogle Scholar
  17. 17.
    Defosseux, M.: Orbit measures, random matrix theory and interlaced determinantal processes. Ann. Inst. Henri Poincaré B, Probab. Stat. 46(1), 209–249 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981) zbMATHGoogle Scholar
  19. 19.
    Haagerup, U., Thorbjørnsen, S.: A new application of random matrices: \(\mathrm{Ext}(C^{*}_{\mathrm{red}} (F_{2}))\) is not a group. Ann. Math. (2) 162(2), 711–775 (2005) zbMATHCrossRefGoogle Scholar
  20. 20.
    Male, C.: The norm of polynomials in large random and deterministic matrices. With an Appendix by D. Shlyakhtenko. arXiv:1004.4155. Probab. Theory Relat. Fields. doi: 10.1007/s00440-011-0375-2
  21. 21.
    Metcalfe, T.: Ph.D. dissertation Google Scholar
  22. 22.
    Nadler, B.: Finite sample approximation results for principal component analysis: a matrix perturbation approach. Ann. Stat. 36(6), 2791–2817 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Nica, A., Speicher, R.: On the multiplication of free n-tuples of noncommutative random variables. Am. J. Math. 118, 799–837 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. Cambridge Univ. Press, Cambridge (2006) zbMATHCrossRefGoogle Scholar
  25. 25.
    Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970), xviii+451 pp. zbMATHGoogle Scholar
  26. 26.
    Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993) zbMATHCrossRefGoogle Scholar
  27. 27.
    Voiculescu, D.: Addition of certain noncommuting random variables. J. Funct. Anal. 66, 323–346 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Voiculescu, D.: Multiplication of certain noncommuting random variables. J. Oper. Theory (1987) Google Scholar
  29. 29.
    Voiculescu, D.: The analogues of entropy and of Fisher’s information measure in free probability theory. 1. Commun. Math. Phys. 155, 71–92 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Voiculescu, D.V., Dykema, K.J., Nica, A.: Free Random Variables. AMS, Providence (1992) zbMATHGoogle Scholar
  31. 31.
    Webster, R.J.: Convexity. Oxford University Press, New York (1994) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Serban Belinschi
    • 1
    • 2
  • Benoît Collins
    • 3
    • 4
  • Ion Nechita
    • 3
  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  2. 2.Department of Mathematics & StatisticsUniversity of SaskatchewanSaskatoonCanada
  3. 3.Département de Mathématique et StatistiqueUniversité d’OttawaOttawaCanada
  4. 4.CNRSInstitut Camille Jordan Université Lyon 1VilleurbanneFrance

Personalised recommendations