Inventiones mathematicae

, Volume 189, Issue 3, pp 515–580 | Cite as

Universality in the 2D Ising model and conformal invariance of fermionic observables

  • Dmitry ChelkakEmail author
  • Stanislav Smirnov


It is widely believed that the celebrated 2D Ising model at criticality has a universal and conformally invariant scaling limit, which is used in deriving many of its properties. However, no mathematical proof has ever been given, and even physics arguments support (a priori weaker) Möbius invariance. We introduce discrete holomorphic fermions for the 2D Ising model at criticality on a large family of planar graphs. We show that on bounded domains with appropriate boundary conditions, those have universal and conformally invariant scaling limits, thus proving the universality and conformal invariance conjectures.

Mathematics Subject Classification

82B20 60K35 30C35 81T40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, M., Bernard, D., Kytölä, K.: Multiple Schramm-Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5–6), 1125–1163 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baxter, R.J.: Solvable eight-vertex model on an arbitrary planar lattice. Philos. Trans. R. Soc. Lond. A 289(1359), 315–346 (1978) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34(5–6), 763–774 (1984) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence (2008) CrossRefGoogle Scholar
  6. 6.
    Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: the periodic case. Probab. Theory Relat. Fields 147(3), 379–413 (2009) CrossRefGoogle Scholar
  7. 7.
    Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: locality property. Commun. Math. Phys. 301(2), 473–516 (2010) CrossRefGoogle Scholar
  8. 8.
    Bücking, U.: Approximation of conformal mappings by circle patterns. Geom. Dedic. 137, 163–197 (2008) zbMATHCrossRefGoogle Scholar
  9. 9.
    Chelkak, D., Izyurov, K.: Holomorphic spinor observables in the critical Ising model. Preprint, arXiv:1105.5709 (2011)
  10. 10.
    Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228(3), 1590–1630 (2000) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Strong convergence of Ising interfaces to Schramm’s SLEs. Preprint (2011) Google Scholar
  12. 12.
    Costa-Santos, R.: Geometrical aspects of the z-invariant Ising model. Eur. Phys. J. B 53(1), 85–90 (2006) CrossRefGoogle Scholar
  13. 13.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    de Tilière, B.: Scaling limit of isoradial dimer models and the case of triangular quadri-tilings. Ann. Inst. Henri Poincaré, Probab. Stat. 43(6), 729–750 (2007) zbMATHCrossRefGoogle Scholar
  15. 15.
    Duffin, R.J.: Potential theory on a rhombic lattice. J. Comb. Theory 5, 258–272 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Fisher, M.E.: Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70(2), 653–681 (1998) zbMATHCrossRefGoogle Scholar
  17. 17.
    Heisenberg, W.: Zur Theorie des Ferromagnetismus. Z. Phys. Hadrons Nucl. 49(9), 619–636 (1928) zbMATHGoogle Scholar
  18. 18.
    Hongler, C., Smirnov, S.: Energy density in the 2D Ising model. Preprint, arXiv:1008.2645 (2010)
  19. 19.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925) CrossRefGoogle Scholar
  20. 20.
    Itzykson, C., Saleur, H., Zuber, J.-B. (eds.): Conformal Invariance and Applications to Statistical Mechanics. World Scientific Publishing Co. Inc., Teaneck (1988) zbMATHGoogle Scholar
  21. 21.
    Kadanoff, L.P.: Scaling laws for Ising models near T c. Physics 2, 263 (1966) Google Scholar
  22. 22.
    Kadanoff, L.P., Ceva, H.: Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B 3, 3918–3939 (1971) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kemppainen, A., Smirnov, S.: Random curves, scaling limits and Loewner evolutions. Preprint (2009) Google Scholar
  24. 24.
    Kemppainen, A., Smirnov, S.: Conformal invariance in random cluster models. II. Full scaling limit (2011, in preparation) Google Scholar
  25. 25.
    Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kenyon, R.: Long-range properties of spanning trees. J. Math. Phys. 41(3), 1338–1363 (2000). Probabilistic techniques in equilibrium and nonequilibrium statistical physics MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kenyon, R., Schlenker, J.-M.: Rhombic embeddings of planar quad-graphs. Trans. Am. Math. Soc. 357(9), 3443–3458 (2005) (electronic) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Pt. 1. Phys. Rev., II Ser. 60, 252–262 (1941) MathSciNetGoogle Scholar
  31. 31.
    Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Lenz, W.: Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Z. 21, 613–615 (1920) Google Scholar
  33. 33.
    Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Niss, M.: History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci. 59(3), 267–318 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Niss, M.: History of the Lenz-Ising model 1950–1965: from irrelevance to relevance. Arch. Hist. Exact Sci. 63(3), 243–287 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Patashinskii, A.Z., Pokrovskii, V.L.: Behavior of ordered systems near the transition point. Sov. Phys. JETP 23, 292 (1966) Google Scholar
  38. 38.
    Peierls, R.: On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc. 32, 477–481 (1936) zbMATHCrossRefGoogle Scholar
  39. 39.
    Polyakov, A.M.: Conformal symmetry of critical fluctuations. JETP Lett. 12(12), 381 (1970) Google Scholar
  40. 40.
    Rajabpour, M.A., Cardy, J.: Discretely holomorphic parafermions in lattice Z N models. J. Phys. A 40(49), 14703–14713 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Riva, V., Cardy, J.: Holomorphic parafermions in the Potts model and stochastic Loewner evolution. J. Stat. Mech. Theory Exp. 12, P12001 (2006), 19 pp. (electronic) MathSciNetCrossRefGoogle Scholar
  42. 42.
    Schramm, O., Sheffield, S.: Harmonic explorer and its convergence to SLE4. Ann. Probab. 33(6), 2127–2148 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Math. Acad. Sci. Paris 333(3), 239–244 (2001) zbMATHCrossRefGoogle Scholar
  45. 45.
    Smirnov, S.: Critical percolation in the plane. Preprint arXiv:0909.4499 (2001)
  46. 46.
    Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic spin structures in the Ising model. Ann. Math. 172, 1435–1467 (2010) zbMATHCrossRefGoogle Scholar
  47. 47.
    Smirnov, S.: Towards conformal invariance of 2D lattice models. In: Sanz-Solé, M., et al. (eds.) Proceedings of the International Congress of Mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Invited Lectures, vol. II, pp. 1421–1451. European Mathematical Society (EMS), Zürich (2006) Google Scholar
  48. 48.
    Smirnov, S.: Discrete complex analysis and probability. In: Bhatia, R., et al. (eds.) Proceedings of the International Congress of Mathematicians (ICM), Hyderabad, India, August 19–27, 2010. Plenary Lectures, vol. I. World Scientific, New Delhi (2010) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.St.Petersburg Department of Steklov Mathematical Institute (PDMI RAS)St. PetersburgRussia
  2. 2.Section de MathématiquesUniversité de GenèveGenève 4Switzerland
  3. 3.Chebyshev Laboratory, Department of Mathematics and MechanicsSaint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations