Advertisement

Inventiones mathematicae

, Volume 188, Issue 2, pp 465–504 | Cite as

Homological stability for configuration spaces of manifolds

  • Thomas Church
Article

Abstract

Let C n (M) be the configuration space of n distinct ordered points in M. We prove that if M is any connected orientable manifold (closed or open), the homology groups H i (C n (M);ℚ) are representation stable in the sense of Church and Farb (arXiv:1008.1368). Applying this to the trivial representation, we obtain as a corollary that the unordered configuration space B n (M) satisfies classical homological stability: for each i, H i (B n (M);ℚ)≈H i (B n+1(M);ℚ) for n>i. This improves on results of McDuff, Segal, and others for open manifolds. Applied to closed manifolds, this provides natural examples where rational homological stability holds even though integral homological stability fails.

To prove the main theorem, we introduce the notion of monotonicity for a sequence of S n -representations, which is of independent interest. Monotonicity provides a new mechanism for proving representation stability using spectral sequences. The key technical point in the main theorem is that certain sequences of induced representations are monotone.

Keywords

Manifold Spectral Sequence Representation Stability Young Diagram Braid Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnol’d, V.I.: The cohomology ring of the colored braid group. Math. Notes 5(2), 138–140 (1969) zbMATHGoogle Scholar
  2. 2.
    Birman, J.: Braids, Links, and Mapping Class Groups. Annals of Mathematics Studies, vol. 82. Princeton University Press, Princeton (1974) Google Scholar
  3. 3.
    Bödigheimer, C.-F., Cohen, F., Taylor, L.: Homology of configuration spaces. Topology 28(1), 111–123 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Brieskorn, E.: Sur les groupes de tresses [d’après V.I. Arnol’d]. In Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401. Lecture Notes in Math., vol. 317, pp. 21–44. Springer, Berlin (1973) (in French) CrossRefGoogle Scholar
  5. 5.
    Church, T., Farb, B.: Representation theory and homological stability, arXiv:1008.1368 (August 2010)
  6. 6.
    Félix, Y., Thomas, J.-C.: Rational Betti numbers of configuration spaces. Topol. Appl. 102(2), 139–149 (2000) zbMATHCrossRefGoogle Scholar
  7. 7.
    Félix, Y., Thomas, J.-C.: Configuration spaces and Massey products. Int. Math. Res. Not. 33, 1685–1702 (2004) CrossRefGoogle Scholar
  8. 8.
    Fulton, W., Harris, J.: Representation Theory. A First Course. Graduate Texts in Mathematics (Readings in Mathematics), vol. 129. Springer, New York (1991) zbMATHGoogle Scholar
  9. 9.
    Fulton, W.: Young Tableaux. With Applications to Representation Theory and Geometry. LMS Student Texts, vol. 35. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  10. 10.
    Hemmer, D.: Stable decompositions for some symmetric group characters arising in braid group cohomology. J. Combin. Theory, Ser. A 118, 1136–1139 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lehrer, G.: Equivariant cohomology of configurations in ℝd. Algebr. Represent. Theory 3(4), 377–384 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lehrer, G., Solomon, L.: On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes. J. Algebra 104(2), 410–424 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Looijenga, E.: Stable cohomology of the mapping class group with symplectic coefficients and of the universal Abel–Jacobi map. J. Algebr. Geom. 5, 135–150 (1996) MathSciNetzbMATHGoogle Scholar
  14. 14.
    McDuff, D.: Configuration spaces of positive and negative particles. Topology 14, 91–107 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Morita, S.: Families of Jacobian manifolds and characteristic classes of surface bundles. I. Ann. Inst. Fourier 39(3), 777–810 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Napolitano, F.: On the cohomology of configuration spaces on surfaces. J. Lond. Math. Soc. 68(2), 477–492 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Randal-Williams, O.: Homological stability for unordered configuration spaces, arXiv:1105.5257 (May 2011)
  18. 18.
    Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms and Symmetric Functions. Graduate Texts in Mathematics, vol. 203. Springer, New York (2001) zbMATHGoogle Scholar
  19. 19.
    Sam, S., Weyman, J.: Pieri resolutions for classical groups. J. Algebra 329, 222–259 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Segal, G.: The topology of spaces of rational functions. Acta Math. 143(1), 39–72 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Stanley, R.: Some aspects of groups acting on finite posets. J. Comb. Theory, Ser. A 32(2), 132–161 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Totaro, B.: Configuration spaces of algebraic varieties. Topology 35(4), 1057–1067 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Vakil, R., Wood, M.M.: Discriminants in the Grothendieck ring. In preparation Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dept. of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations