Inventiones mathematicae

, Volume 186, Issue 2, pp 373–434 | Cite as

The classification of irreducible admissible mod p representations of a p-adic GL n

Article

Abstract

Let F be a finite extension of ℚ p . Using the mod p Satake transform, we define what it means for an irreducible admissible smooth representation of an F-split p-adic reductive group over \(\overline{ \mathbb{F}}_{p}\) to be supersingular. We then give the classification of irreducible admissible smooth GL n (F)-representations over \(\overline{ \mathbb{F}}_{p}\) in terms of supersingular representations. As a consequence we deduce that supersingular is the same as supercuspidal. These results generalise the work of Barthel–Livné for n=2. For general split reductive groups we obtain similar results under stronger hypotheses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthel, L., Livné, R.: Irreducible modular representations of GL2 of a local field. Duke Math. J. 75(2), 261–292 (1994) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barthel, L., Livné, R.: Modular representations of GL2 of a local field: the ordinary, unramified case. J. Number Theory 55(1), 1–27 (1995) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Breuil, C., Paškūnas, V.: Towards a modulo p Langlands correspondence for GL2. Mem. Am. Math. Soc. (to appear) Google Scholar
  4. 4.
    Breuil, C.: Sur quelques représentations modulaires et p-adiques de GL2(Q p). I. Compos. Math. 138(2), 165–188 (2003) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Breuil, C.: Sur quelques représentations modulaires et p-adiques de GL2(Q p). II. J. Inst. Math. Jussieu 2(1), 23–58 (2003) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41, 5–251 (1972) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. Inst. Hautes Études Sci. Publ. Math. 60, 197–376 (1984) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive \(\mathfrak{p}\)-adic groups. I. Ann. Sci. Ec. Norm. Super. (4) 10(4), 441–472 (1977) MathSciNetMATHGoogle Scholar
  9. 9.
    Cartier, P.: Representations of p-adic groups: a survey. In: Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1. Proc. Sympos. Pure Math., vol. XXXIII, pp. 111–155. Am. Math. Soc., Providence (1979) Google Scholar
  10. 10.
    Colmez, P.: Représentations de GL2(Q p) et (φ,Γ)-modules. Astérisque 330, 281–509 (2010) MathSciNetGoogle Scholar
  11. 11.
    Emerton, M.: Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties. Astérisque 331, 355–402 (2010) MathSciNetGoogle Scholar
  12. 12.
    Emerton, M.: Ordinary parts of admissible representations of p-adic reductive groups II. Derived functors. Astérisque 331, 403–459 (2010) MathSciNetGoogle Scholar
  13. 13.
    Grothendieck, A., et al.: SGA 3: Schémas en Groupes I, II, III. Lecture Notes in Math., vols. 151, 152, 153. Springer, Heidelberg (1970) Google Scholar
  14. 14.
    Große-Klönne, E.: On special representations of p-adic reductive groups. Preprint, version of 9/14/2009 Google Scholar
  15. 15.
    Gross, B.H.: On the Satake isomorphism. In: Galois Representations in Arithmetic Algebraic Geometry, Durham, 1996. London Math. Soc. Lecture Note Ser., vol. 254, pp. 223–237. Cambridge University Press, Cambridge (1998) CrossRefGoogle Scholar
  16. 16.
    Herzig, F.: The weight in a Serre-type conjecture for tame n-dimensional Galois representations. Duke Math. J. 149(1), 37–116 (2009) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Herzig, F.: A Satake isomorphism in characteristic p. Compos. Math. 147(1), 263–283 (2011) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Haines, T.J., Kottwitz, R.E., Prasad, A.: Iwahori-Hecke algebras. J. Ramanujan Math. Soc. 25(2), 113–145 (2010) MathSciNetMATHGoogle Scholar
  19. 19.
    Hu, Y.: Sur quelques représentations supersingulières de \(\mathrm{GL}_{2}(\Bbb{Q}_{p^{f}})\). J. Algebra 324(7), 1577–1615 (2010) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Iwahori, N.: Generalized Tits system (Bruhat decompostition) on p-adic semisimple groups. In: Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., Boulder, Colo., 1965, pp. 71–83. Am. Math. Soc., Providence (1966) Google Scholar
  21. 21.
    Jantzen, J.C.: In: Representations of Algebraic Groups, 2nd edn. Mathematical Surveys and Monographs, vol. 107. Am. Math. Soc., Providence (2003) Google Scholar
  22. 22.
    Kisin, M.: The Fontaine-Mazur conjecture for L2. J. Am. Math. Soc. 22(3), 641–690 (2009) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Ollivier, R.: Critère d’irréductibilité pour les séries principales de GLn(F) en caractéristique p. J. Algebra 304(1), 39–72 (2006) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Paškūnas, V.: Extensions for supersingular representations of GL2(ℚp). Astérisque 331, 317–353 (2010) Google Scholar
  25. 25.
    Schneider, P., Stuhler, U.: The cohomology of p-adic symmetric spaces. Invent. Math. 105(1), 47–122 (1991) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Tits, J.: Reductive groups over local fields. In: Automorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1. Proc. Sympos. Pure Math., vol. XXXIII, pp. 29–69. Am. Math. Soc., Providence (1979) Google Scholar
  27. 27.
    Vignéras, M.-F.: Representations modulo p of the p-adic group GL(2,F). Compos. Math. 140(2), 333–358 (2004) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Vignéras, M.-F.: Pro-p-Iwahori Hecke ring and supersingular \(\overline{\bold F}_{p}\)-representations. Math. Ann. 331(3), 523–556 (2005) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Vignéras, M.-F.: Série principale modulo p de groupes réductifs p-adiques. Geom. Funct. Anal. 17(6), 2090–2112 (2008) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Zelevinsky, A.V.: Induced representations of reductive \(\mathfrak{p}\)-adic groups. II. On irreducible representations of GL(n). Ann. Sci. Ec. Norm. Super. (4) 13(2), 165–210 (1980) MathSciNetMATHGoogle Scholar
  31. 31.
    Zelevinskiĭ, A.V.: The p-adic analogue of the Kazhdan-Lusztig conjecture. Funkc. Anal. Prilozh. 15(2), 9–21 (1981), p. 96 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsEvanstonUSA

Personalised recommendations