Inventiones mathematicae

, Volume 185, Issue 1, pp 1–16 | Cite as

Even Galois representations and the Fontaine–Mazur conjecture

Article

Abstract

We prove, under mild hypotheses, that there are no irreducible two-dimensional ordinary even Galois representations of \(\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})\) with distinct Hodge–Tate weights. This is in accordance with the Fontaine–Mazur conjecture. If K/Q is an imaginary quadratic field, we also prove (again, under certain hypotheses) that \(\mathrm{Gal}(\overline{\mathbf{Q}}/K)\) does not admit irreducible two-dimensional ordinary Galois representations of non-parallel weight.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, J., Clozel, L.: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. Annals of Mathematics Studies, vol. 120. Princeton University Press, Princeton (1989), xiv+230 pp MATHGoogle Scholar
  2. 2.
    Asgari, M., Raghuram, A.: A cuspidality criterion for the exterior square transfer of cusp forms on GL(4). In: Conference Proceedings of Shahidi’s 60th Birthday Conference, to appear Google Scholar
  3. 3.
    Barnet-Lamb, T.: Potential automorphy for certain Galois representations to GL2n. Preprint Google Scholar
  4. 4.
    Barnet-Lamb, T.: On the potential automorphy of certain odd-dimensional Galois representations. Preprint Google Scholar
  5. 5.
    Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi–Yau varieties and potential automorphy II. P.R.I.M.S., to appear Google Scholar
  6. 6.
    Bellaïche, J., Chenevier, G.: The sign of Galois representations attached to automorphic forms for unitary groups. Preprint Google Scholar
  7. 7.
    Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Annals of Mathematics Studies, vol. 94. Princeton University Press/University of Tokyo Press, Princeton/Tokyo (1980), xvii+388 pp MATHGoogle Scholar
  8. 8.
    Breuil, C., Mezard, A.: Multiplicités modulaires et représentations de GL2(Z p) et de \(\mathrm{Gal}(\overline{\mathbf{Q}}_{p}/\mathbf{Q}_{p})\) en l=p. With an appendix by Guy Henniart. Duke Math. J. 115(2), 205–310 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Buzzard, K., Gee, T.: The conjectural connections between automorphic representations and Galois representations. Preprint Google Scholar
  10. 10.
    Chenevier, G., Clozel, L.: Corps de nombres peu ramifiés et formes automorphes autoduales. J. Am. Math. Soc. 22(2), 467–519 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cline, E., Parshall, B., Scott, L.: Cohomology of finite groups of Lie type. I. Publ. Math. IHES 45, 169–191 (1975) MathSciNetMATHGoogle Scholar
  12. 12.
    Clozel, L.: Motifs et formes automorphes: applications du principe de fonctorialité. In: Automorphic Forms, Shimura Varieties, and L-functions, vol. I, Ann Arbor, MI, 1988. Perspect. Math., vol. 10, pp. 77–159. Academic Press, Boston (1990) Google Scholar
  13. 13.
    Clozel, L., Harris, M., Taylor, R.: Automorphy for some l-adic lifts of automorphic mod l representations. Publ. Math. IHES 108, 1–181 (2008) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Figueiredo, L.: Serre’s conjecture for imaginary quadratic fields. Compos. Math. 118(1), 103–122 (1999) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Fontaine, J.-M., Mazur, B.: Geometric Galois representations. In: Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Hong Kong, 1993. Ser. Number Theory, vol. I, pp. 41–78. Int. Press, Cambridge (1995) Google Scholar
  16. 16.
    Geraghty, D.: Modularity lifting theorems for ordinary representations. Preprint Google Scholar
  17. 17.
    Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties. With an Appendix by Vladimir G. Berkovich. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001), viii+276 pp MATHGoogle Scholar
  18. 18.
    Jacquet, H., Shalika, J.A.: On Euler products and the classification of automorphic forms. II. Am. J. Math. 103(4), 777–815 (1981) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture (I). Preprint Google Scholar
  20. 20.
    Kisin, M.: Modularity of 2-adic Barsotti–Tate representations. Invent. Math. 178(3), 587–634 (2009) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kim, H.: Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J. Am. Math. Soc. 16(1), 139–183 (2003) MATHCrossRefGoogle Scholar
  22. 22.
    Langlands, R., Ramakrishnan, D. (eds.): Zeta functions of Picard modular surfaces. CRM Publications, Montréal (1992) MATHGoogle Scholar
  23. 23.
    Ramakrishna, R.: Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur. Ann. Math. 156, 115–154 (2002) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ramakrishnan, D.: Modular forms over CM fields and Galois representations. In preparation Google Scholar
  25. 25.
    Ramakrishnan, D.: An exercise concerning the selfdual cusp forms on GL(3). Preprint Google Scholar
  26. 26.
    Ramakrishnan, D.: Irreducibility of -adic representations associated to regular cusp forms on GL(4)/Q. Preprint Google Scholar
  27. 27.
    Taylor, R.: Automorphy for some l-adic lifts of automorphic mod l representations. II. Publ. Math. IHES 108, 183–239 (2008) MATHCrossRefGoogle Scholar
  28. 28.
    Taylor, R.: The image of complex conjugation on -adic representations associated to automorphic forms. Preprint Google Scholar
  29. 29.
    Taylor, R.: On the meromorphic continuation of degree two L-functions. J. Inst. Math. Jussieu 1, 1–19 (2002) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations