Inventiones mathematicae

, Volume 183, Issue 3, pp 649–680 | Cite as

Construction of maximal unramified p-extensions with prescribed Galois groups

Article

Mathematics Subject Classification (2010)

11R32 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferrero, B., Washington, L.C.: The Iwasawa invariant μ p vanishes for abelian number fields. Ann. Math. 109, 377–395 (1979) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fontaine, J.-M., Mazur, B.: Geometric Galois representations. In: Elliptic Curves, Modular Forms, & Fermat’s Last Theorem (Hong Kong, 1993). Ser. Number Theory, vol. I, pp. 41–78. International Press, Cambridge (1995), Google Scholar
  3. 3.
    Fröhlich, A.: Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields. Contemporary Mathematics, vol. 24. American Mathematical Society, Providence (1983) MATHGoogle Scholar
  4. 4.
    Horie, K.: A note on basic Iwasawa λ-invariants of imaginary quadratic fields. Invent. Math. 88, 31–38 (1987) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Semin. Univ. Hamb. 20, 257–258 (1956) MathSciNetMATHGoogle Scholar
  6. 6.
    Iwasawa, K.: A note on the group of units of an algebraic number field. J. Math. Pure Appl. 35, 189–192 (1956) MathSciNetMATHGoogle Scholar
  7. 7.
    Iwasawa, K.: On the μ-invariants of ℤl-extensions. In: Number Theory, Algebraic Geometry, and Commutative Algebra, in Honor of Yasuo Akizuki, pp. 1–11. Kinokuniya, Tokyo (1973) Google Scholar
  8. 8.
    Janusz, G.J.: Algebraic Number Fields, 2nd edn. Graduate Studies in Mathematics, vol. 7. American Mathematical Society, Providence (1996) MATHGoogle Scholar
  9. 9.
    Ledet, A.: Brauer Type Embedding Problems. Fields Institute Monographs, vol. 21. American Mathematical Society, Providence (2005) MATHGoogle Scholar
  10. 10.
    Neukirch, J.: Über das Einbettungsproblem der algebraischen Zahlentheorie. Invent. Math. 21, 59–116 (1973) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Scholz, A., Taussky, O.: Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einflußauf den Klassenkörperturm. J. Reine Angew. Math. 171, 19–41 (1934) Google Scholar
  12. 12.
    Tate, J.: Global class field theory. In: Algebraic Number Theory, Proc. Instructional Conf., Brighton, 1965, pp. 162–203. Thompson, Washington (1967) Google Scholar
  13. 13.
    Yahagi, O.: Construction of Number fields with prescribed l-class groups. Tokyo J. Math. 1, 275–283 (1978) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mathematics, School of Science and EngineeringKinki UniversityHigashi-OsakaJapan

Personalised recommendations