Inventiones mathematicae

, Volume 183, Issue 2, pp 385–450 | Cite as

Asymptotic unitary equivalence and classification of simple amenable C -algebras

Article

Abstract

Let C and A be two unital separable amenable simple C -algebras with tracial rank at most one. Suppose that C satisfies the Universal Coefficient Theorem and suppose that ϕ 1,ϕ 2:CA are two unital monomorphisms. We show that there is a continuous path of unitaries {u t :t∈[0,∞)} of A such that
$$\lim_{t\to\infty}u_t^*\varphi_1(c)u_t=\varphi_2(c)\quad\mbox{for all }c\in C$$
if and only if [ϕ 1]=[ϕ 2] in \(KK(C,A),\varphi_{1}^{\ddag}=\varphi_{2}^{\ddag},(\varphi_{1})_{T}=(\varphi _{2})_{T}\) and a rotation related map \(\overline{R}_{\varphi_{1},\varphi_{2}}\) associated with ϕ 1 and ϕ 2 is zero.

Applying this result together with a result of W. Winter, we give a classification theorem for a class \({\mathcal{A}}\) of unital separable simple amenable C -algebras which is strictly larger than the class of separable C -algebras with tracial rank zero or one. Tensor products of two C -algebras in \({\mathcal{A}}\) are again in \({\mathcal{A}}\). Moreover, this class is closed under inductive limits and contains all unital simple ASH-algebras for which the state space of K 0 is the same as the tracial state space and also some unital simple ASH-algebras whose K 0-group is ℤ and whose tracial state spaces are any metrizable Choquet simplex. One consequence of the main result is that all unital simple AH-algebras which are \({\mathcal{Z}}\)-stable are isomorphic to ones with no dimension growth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackadar, B., Rørdam, M.: Extending states on preordered semigroups and the existence of quasitraces on C -algebras. J. Algebra 152, 240–247 (1992) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dadarlat, M., Loring, T.: A universal multicoefficient theorem for the Kasparov groups. Duke Math. J. 84, 355–377 (1996) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de la Harpe, P., Skandalis, G.: Déterminant associé a une trace sur une algébre de Banach. Ann. Inst. Fourier 34, 169–202 (1984) MATHGoogle Scholar
  4. 4.
    Dixmier, J.: On some C -algebras considered by Glimm. J. Funct. Anal. 1, 182–203 (1967) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Elliott, G.A.: On the classification of C -algebras of real rank zero. J. Reine Angew. Math. 443, 179–219 (1993) MATHMathSciNetGoogle Scholar
  6. 6.
    Elliott, G.A., Gong, G.: On the classification of C -algebras of real rank zero, II. Ann. Math. 144, 497–610 (1996) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Elliott, G.A., Gong, G., Li, L.: Approximate divisibility of simple inductive limit C -algebras. In: Operator Algebras and Operator Theory, Shanghai, 1997. Contemp. Math., vol. 228, pp. 87–97. Am. Math. Soc., Providence (1998) Google Scholar
  8. 8.
    Elliott, G.A., Gong, G., Li, L.: Injectivity of the connecting maps in AH inductive limit systems. Can. Math. Bull. 48, 50–68 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Elliott, G.A., Gong, G., Li, L.: On the classification of simple inductive limit C -algebras. II. The isomorphism theorem. Invent. Math. 168, 249–320 (2007) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Elliott, G.A., Loring, T.: AF embeddings of C(T 2) with a prescribed K-theory. J. Funct. Anal. 103, 1–25 (1992) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Elliott, G.A., Rørdam, M.: Classification of certain infinite simple C -algebras, II. Comment. Math. Helv. 70, 615–638 (1995) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Exel, R.: The soft torus and applications to almost commuting metrics. Pac. J. Math. 160, 207–217 (1993) MATHMathSciNetGoogle Scholar
  13. 13.
    Gong, G.: On the classification of simple inductive limit C -algebras, I. The reduction theorem. Doc. Math. 7, 255–461 (2002) MATHMathSciNetGoogle Scholar
  14. 14.
    Haagerup, U.: Quasitraces in exact C -algebras are traces. Manuscript distributed at the Operator Algebra Conference in Istanbul (1991) Google Scholar
  15. 15.
    Jiang, X., Su, H.: On a simple unital projectionless C -algebra. Am. J. Math. 121, 359–413 (1999) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kishimoto, A., Kumjian, A.: The Ext class of an approximately inner automorphism, II. J. Oper. Theory 46, 99–122 (2001) MathSciNetGoogle Scholar
  17. 17.
    Li, L.: C -algebra homomorphisms and KK-theory. K-Theory 18, 161–172 (1999) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lin, H.: Tracial topological ranks of C -algebras. Proc. Lond. Math. Soc. 83, 199–234 (2001) MATHCrossRefGoogle Scholar
  19. 19.
    Lin, H.: An Introduction to the Classification of Amenable C -Algebras. World Scientific, River Edge (2001) CrossRefGoogle Scholar
  20. 20.
    Lin, H.: Embedding an AH-algebra into a simple C -algebra with prescribed KK-data. K-Theory 24, 135–156 (2001) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lin, H.: Classification of simple C -algebras and higher dimensional noncommutative tori. Ann. Math. 157, 521–544 (2003) MATHCrossRefGoogle Scholar
  22. 22.
    Lin, H.: Simple AH-algebras of real rank zero. Proc. Am. Math. Soc. 131, 3813–3819 (2003) MATHCrossRefGoogle Scholar
  23. 23.
    Lin, H.: Classification of simple C -algebras with tracial topological rank zero. Duke Math. J. 125, 91–119 (2004) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lin, H.: Unitary equivalences for essential extensions of C -algebras. Proc. Am. Math. Soc. 137, 3407–3420 (2009). arXiv:math/0403236 MATHCrossRefGoogle Scholar
  25. 25.
    Lin, H.: Approximate homotopy of homomorpisms from C(X) into a simple C -algebra. Mem. Am. Math. Soc. 205(963), vi+131 pp. (2010). math.OA/0612125
  26. 26.
    Lin, H.: Simple nuclear C -algebras of tracial topological rank one. J. Funct. Anal. 251, 601–679 (2007) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lin, H.: AF-embedding of crossed products of AH-algebras by ℤ and asymptotic AF-embedding. Indiana Univ. Math. J. 57, 891–944 (2008) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Lin, H.: Asymptotically unitary equivalence and asymptotically inner automorphisms. Am. J. Math. 131, 1589–1677 (2009) MATHCrossRefGoogle Scholar
  29. 29.
    Lin, H.: AF-embedding of the crossed products of AH-algebras by finitely generated Abelian groups. Int. Math. Res. Pap. 3, rpn007 (2008) Google Scholar
  30. 30.
    Lin, H.: Localizing the Elliott conjecture at strongly self-absorbing C -algebras—an appendix. Preprint. arXiv:0709.1654 v2
  31. 31.
    Lin, H.: Approximate unitary equivalence in simple C -algebras of tracial rank one. Preprint. arXiv:0801.2929
  32. 32.
    Lin, H.: The Range of approximate unitary equivalence classes of homomorphisms from AH-algebras. Math. Z. 263, 903–922 (2009) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lin, H.: Homotopy of unitaries in simple C -algebras with tracial rank one. J. Funct. Anal. 258, 1822–1882 (2010) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Lin, H., Niu, Z.: Lifting KK-elements, asymptotical unitary equivalence and classification of simple C -algebras. Adv. Math. 219, 1729–1769 (2008) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Lin, H., Niu, Z.: The range of classifiable simple amenable C -algebras. Preprint. arXiv:0808.3424
  36. 36.
    Loring, T.: K-theory and asymptotically commuting matrices. Can. J. Math. 40, 197–216 (1988) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Mygind, J.: Classification of certain simple C -algebras with torsion in K 1. Can. J. Math. 53, 1223–1308 (2001) MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Nielsen, K.E., Thomsen, K.: Limits of circle algebras. Expo. Math. 14, 17–56 (1996) MATHMathSciNetGoogle Scholar
  39. 39.
    Thomsen, K.: Traces, unitary characters and crossed products by Z. Publ. Res. Inst. Math. Sci. 31, 1011–1029 (1995) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Toms, A., Winter, W.: Strongly self-absorbing C -algebras. Trans. Am. Math. Soc. 359, 3999–4029 (2007) MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Toms, A., Winter, W.: The Elliott conjecture for Villadsen algebras of the first type. J. Funct. Anal. 256, 1311–1340 (2009) MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Winter, W.: Localizing the Elliott conjecture at strongly self-absorbing C -algebras. Preprint. arXiv:0708.0283v2

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsEast China Normal UniversityShanghaiChina

Personalised recommendations