Inventiones mathematicae

, Volume 183, Issue 2, pp 385–450 | Cite as

Asymptotic unitary equivalence and classification of simple amenable C -algebras



Let C and A be two unital separable amenable simple C -algebras with tracial rank at most one. Suppose that C satisfies the Universal Coefficient Theorem and suppose that ϕ 1,ϕ 2:CA are two unital monomorphisms. We show that there is a continuous path of unitaries {u t :t∈[0,∞)} of A such that
$$\lim_{t\to\infty}u_t^*\varphi_1(c)u_t=\varphi_2(c)\quad\mbox{for all }c\in C$$
if and only if [ϕ 1]=[ϕ 2] in \(KK(C,A),\varphi_{1}^{\ddag}=\varphi_{2}^{\ddag},(\varphi_{1})_{T}=(\varphi _{2})_{T}\) and a rotation related map \(\overline{R}_{\varphi_{1},\varphi_{2}}\) associated with ϕ 1 and ϕ 2 is zero.

Applying this result together with a result of W. Winter, we give a classification theorem for a class \({\mathcal{A}}\) of unital separable simple amenable C -algebras which is strictly larger than the class of separable C -algebras with tracial rank zero or one. Tensor products of two C -algebras in \({\mathcal{A}}\) are again in \({\mathcal{A}}\). Moreover, this class is closed under inductive limits and contains all unital simple ASH-algebras for which the state space of K 0 is the same as the tracial state space and also some unital simple ASH-algebras whose K 0-group is ℤ and whose tracial state spaces are any metrizable Choquet simplex. One consequence of the main result is that all unital simple AH-algebras which are \({\mathcal{Z}}\)-stable are isomorphic to ones with no dimension growth.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blackadar, B., Rørdam, M.: Extending states on preordered semigroups and the existence of quasitraces on C -algebras. J. Algebra 152, 240–247 (1992) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dadarlat, M., Loring, T.: A universal multicoefficient theorem for the Kasparov groups. Duke Math. J. 84, 355–377 (1996) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de la Harpe, P., Skandalis, G.: Déterminant associé a une trace sur une algébre de Banach. Ann. Inst. Fourier 34, 169–202 (1984) MATHGoogle Scholar
  4. 4.
    Dixmier, J.: On some C -algebras considered by Glimm. J. Funct. Anal. 1, 182–203 (1967) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Elliott, G.A.: On the classification of C -algebras of real rank zero. J. Reine Angew. Math. 443, 179–219 (1993) MATHMathSciNetGoogle Scholar
  6. 6.
    Elliott, G.A., Gong, G.: On the classification of C -algebras of real rank zero, II. Ann. Math. 144, 497–610 (1996) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Elliott, G.A., Gong, G., Li, L.: Approximate divisibility of simple inductive limit C -algebras. In: Operator Algebras and Operator Theory, Shanghai, 1997. Contemp. Math., vol. 228, pp. 87–97. Am. Math. Soc., Providence (1998) Google Scholar
  8. 8.
    Elliott, G.A., Gong, G., Li, L.: Injectivity of the connecting maps in AH inductive limit systems. Can. Math. Bull. 48, 50–68 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Elliott, G.A., Gong, G., Li, L.: On the classification of simple inductive limit C -algebras. II. The isomorphism theorem. Invent. Math. 168, 249–320 (2007) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Elliott, G.A., Loring, T.: AF embeddings of C(T 2) with a prescribed K-theory. J. Funct. Anal. 103, 1–25 (1992) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Elliott, G.A., Rørdam, M.: Classification of certain infinite simple C -algebras, II. Comment. Math. Helv. 70, 615–638 (1995) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Exel, R.: The soft torus and applications to almost commuting metrics. Pac. J. Math. 160, 207–217 (1993) MATHMathSciNetGoogle Scholar
  13. 13.
    Gong, G.: On the classification of simple inductive limit C -algebras, I. The reduction theorem. Doc. Math. 7, 255–461 (2002) MATHMathSciNetGoogle Scholar
  14. 14.
    Haagerup, U.: Quasitraces in exact C -algebras are traces. Manuscript distributed at the Operator Algebra Conference in Istanbul (1991) Google Scholar
  15. 15.
    Jiang, X., Su, H.: On a simple unital projectionless C -algebra. Am. J. Math. 121, 359–413 (1999) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kishimoto, A., Kumjian, A.: The Ext class of an approximately inner automorphism, II. J. Oper. Theory 46, 99–122 (2001) MathSciNetGoogle Scholar
  17. 17.
    Li, L.: C -algebra homomorphisms and KK-theory. K-Theory 18, 161–172 (1999) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lin, H.: Tracial topological ranks of C -algebras. Proc. Lond. Math. Soc. 83, 199–234 (2001) MATHCrossRefGoogle Scholar
  19. 19.
    Lin, H.: An Introduction to the Classification of Amenable C -Algebras. World Scientific, River Edge (2001) CrossRefGoogle Scholar
  20. 20.
    Lin, H.: Embedding an AH-algebra into a simple C -algebra with prescribed KK-data. K-Theory 24, 135–156 (2001) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lin, H.: Classification of simple C -algebras and higher dimensional noncommutative tori. Ann. Math. 157, 521–544 (2003) MATHCrossRefGoogle Scholar
  22. 22.
    Lin, H.: Simple AH-algebras of real rank zero. Proc. Am. Math. Soc. 131, 3813–3819 (2003) MATHCrossRefGoogle Scholar
  23. 23.
    Lin, H.: Classification of simple C -algebras with tracial topological rank zero. Duke Math. J. 125, 91–119 (2004) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lin, H.: Unitary equivalences for essential extensions of C -algebras. Proc. Am. Math. Soc. 137, 3407–3420 (2009). arXiv:math/0403236 MATHCrossRefGoogle Scholar
  25. 25.
    Lin, H.: Approximate homotopy of homomorpisms from C(X) into a simple C -algebra. Mem. Am. Math. Soc. 205(963), vi+131 pp. (2010). math.OA/0612125
  26. 26.
    Lin, H.: Simple nuclear C -algebras of tracial topological rank one. J. Funct. Anal. 251, 601–679 (2007) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lin, H.: AF-embedding of crossed products of AH-algebras by ℤ and asymptotic AF-embedding. Indiana Univ. Math. J. 57, 891–944 (2008) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Lin, H.: Asymptotically unitary equivalence and asymptotically inner automorphisms. Am. J. Math. 131, 1589–1677 (2009) MATHCrossRefGoogle Scholar
  29. 29.
    Lin, H.: AF-embedding of the crossed products of AH-algebras by finitely generated Abelian groups. Int. Math. Res. Pap. 3, rpn007 (2008) Google Scholar
  30. 30.
    Lin, H.: Localizing the Elliott conjecture at strongly self-absorbing C -algebras—an appendix. Preprint. arXiv:0709.1654 v2
  31. 31.
    Lin, H.: Approximate unitary equivalence in simple C -algebras of tracial rank one. Preprint. arXiv:0801.2929
  32. 32.
    Lin, H.: The Range of approximate unitary equivalence classes of homomorphisms from AH-algebras. Math. Z. 263, 903–922 (2009) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lin, H.: Homotopy of unitaries in simple C -algebras with tracial rank one. J. Funct. Anal. 258, 1822–1882 (2010) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Lin, H., Niu, Z.: Lifting KK-elements, asymptotical unitary equivalence and classification of simple C -algebras. Adv. Math. 219, 1729–1769 (2008) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Lin, H., Niu, Z.: The range of classifiable simple amenable C -algebras. Preprint. arXiv:0808.3424
  36. 36.
    Loring, T.: K-theory and asymptotically commuting matrices. Can. J. Math. 40, 197–216 (1988) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Mygind, J.: Classification of certain simple C -algebras with torsion in K 1. Can. J. Math. 53, 1223–1308 (2001) MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Nielsen, K.E., Thomsen, K.: Limits of circle algebras. Expo. Math. 14, 17–56 (1996) MATHMathSciNetGoogle Scholar
  39. 39.
    Thomsen, K.: Traces, unitary characters and crossed products by Z. Publ. Res. Inst. Math. Sci. 31, 1011–1029 (1995) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Toms, A., Winter, W.: Strongly self-absorbing C -algebras. Trans. Am. Math. Soc. 359, 3999–4029 (2007) MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Toms, A., Winter, W.: The Elliott conjecture for Villadsen algebras of the first type. J. Funct. Anal. 256, 1311–1340 (2009) MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Winter, W.: Localizing the Elliott conjecture at strongly self-absorbing C -algebras. Preprint. arXiv:0708.0283v2

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsEast China Normal UniversityShanghaiChina

Personalised recommendations