Advertisement

Inventiones mathematicae

, Volume 183, Issue 2, pp 245–336 | Cite as

Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces

  • Jérôme Le RousseauEmail author
  • Luc Robbiano
Article

Abstract

In (0,TΩ, Ω open subset of ℝ n , n≥2, we consider a parabolic operator P= t −∇ x δ(t,x)∇ x , where the (scalar) coefficient δ(t,x) is piecewise smooth in space yet discontinuous across a smooth interface S. We prove a global in time, local in space Carleman estimate for P in the neighborhood of any point of the interface. The “observation” region can be chosen independently of the sign of the jump of the coefficient δ at the considered point. The derivation of this estimate relies on the separation of the problem into three microlocal regions related to high and low tangential frequencies at the interface. In the high-frequency regime we use Calderón projectors. In the low-frequency regime we follow a more classical approach. Because of the parabolic nature of the problem we need to introduce Weyl-Hörmander anisotropic metrics, symbol classes and pseudo-differential operators. Each frequency regime and the associated technique require a different calculus. A global in time and space Carleman estimate on (0,TM, M a manifold, is also derived from the local result.

Mathematics Subject Classification (2000)

35K05 35K20 35S15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbu, V.: Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42, 73–89 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellassoued, M.: Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization. Asymptot. Anal. 35, 257–279 (2003) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Benabdallah, A., Dermenjian, Y., Le Rousseau, J.: Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl. 336, 865–887 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bony, J.M., Chemin, J.Y.: Espaces fonctionnels associés au calcul de Weyl-Hörmander. Bull. Soc. Math. France 122, 77–118 (1994) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bukhgeim, A.L., Klibanov, M.V.: Global uniqueness of class of multidimensional inverse problems. Sov. Math. Dokl. 24, 244–247 (1981) Google Scholar
  6. 6.
    Chazarain, J., Piriou, A.: Introduction to the Theory of Linear Partial Differential Equations. North-Holland, Amsterdam (1982) zbMATHGoogle Scholar
  7. 7.
    Doubova, A., Osses, A., Puel, J.P.: Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM: Control Optim. Calc. Var. 8, 621–661 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fernández-Cara, E., Zuazua, E.: Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincaré, Anal. Non Lineaire 17, 583–616 (2000) zbMATHCrossRefGoogle Scholar
  9. 9.
    Fursikov, A., Imanuvilov, O.Yu.: Controllability of Evolution Equations. Lecture Notes, vol. 34. Seoul National University, Seoul (1996) zbMATHGoogle Scholar
  10. 10.
    Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin (1963) zbMATHGoogle Scholar
  11. 11.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer, Berlin (1985). Second printing 1994 Google Scholar
  12. 12.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. IV. Springer, Berlin (1985) Google Scholar
  13. 13.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I, 2nd edn. Springer, Berlin (1990) Google Scholar
  14. 14.
    Imanuvilov, O.Yu., Isakov, V., Yamamoto, M.: An inverse problem for the dynamical Lamé system with two sets of boundary data. Commun. Pure Appl. Math. 56, 1366–1382 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, Berlin (1998) zbMATHGoogle Scholar
  16. 16.
    Kenig, C.E., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165, 567–591 (2007) zbMATHCrossRefGoogle Scholar
  17. 17.
    Le Rousseau, J.: Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients. J. Differ. Equ. 233, 417–447 (2007) zbMATHCrossRefGoogle Scholar
  18. 18.
    Le Rousseau, J., Lebeau, G.: On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. Preprint (2009) Google Scholar
  19. 19.
    Le Rousseau, J., Robbiano, L.: Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations. Arch. Ration. Mech. Anal. 105, 953–990 (2010) CrossRefGoogle Scholar
  20. 20.
    Lebeau, G., Robbiano, L.: Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20, 335–356 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lebeau, G., Robbiano, L.: Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86, 465–491 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis. Springer, Berlin (2002) zbMATHGoogle Scholar
  23. 23.
    Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton (1981) zbMATHGoogle Scholar
  24. 24.
    Zuily, C.: Uniqueness and Non Uniqueness in the Cauchy Problem. Progress in Mathematics. Birkhauser, Basel (1983) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Université d’Orléans, Laboratoire Mathématiques et Applications, Physique Mathématique d’OrléansCNRS UMR 6628, Fédération Denis-Poisson, FR CNRS 2964Orléans cedex 2France
  2. 2.Université de Versailles Saint-Quentin, Laboratoire de Mathématiques de VersaillesCNRS UMR 8100VersaillesFrance

Personalised recommendations