Inventiones mathematicae

, Volume 182, Issue 1, pp 117–165 | Cite as

Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations

Article

Abstract

We compute the recently introduced Fan–Jarvis–Ruan–Witten theory of W-curves in genus zero for quintic polynomials in five variables and we show that it matches the Gromov–Witten genus-zero theory of the quintic three-fold via a symplectic transformation. More specifically, we show that the J-function encoding the Fan–Jarvis–Ruan–Witten theory on the A-side equals via a mirror map the I-function embodying the period integrals at the Gepner point on the B-side. This identification inscribes the physical Landau–Ginzburg/Calabi–Yau correspondence within the enumerative geometry of moduli of curves, matches the genus-zero invariants computed by the physicists Huang, Klemm, and Quackenbush at the Gepner point, and yields via Givental’s quantization a prediction on the relation between the full higher genus potential of the quintic three-fold and that of Fan–Jarvis–Ruan–Witten theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramovich, D., Graber, T., Vistoli, A.: Gromov–Witten theory of Deligne–Mumford stacks. Am. J. Math. 130(5), 1337–1398 (2008). Preprint version: math.AG/0603151 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abramovich, D., Jarvis, T.J.: Moduli of twisted spin curves. Proc. Am. Math. Soc. 131, 685–699 (2003). Preprint version: math.AG/0104154 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Abramovich, D., Vistoli, A.: Compactifying the space of stable maps. J. Am. Math. Soc. 15(1), 27–75 (2002). Preprint version: math.AG/9908167 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Candelas, P., De La Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991) MATHCrossRefGoogle Scholar
  5. 5.
    Chiodo, A.: The Witten top Chern class via K-theory. J. Algebr. Geom. 15(4), 681–707 (2006). Preprint version: math.AG/0210398 MATHMathSciNetGoogle Scholar
  6. 6.
    Chiodo, A.: Stable twisted curves and their r-spin structures (Courbes champêtres stables et leurs structures r-spin). Ann. Inst. Fourier 58(5), 1635–1689 (2008). Preprint version: math.AG/0603687 MATHMathSciNetGoogle Scholar
  7. 7.
    Chiodo, A.: Towards an enumerative geometry of the moduli space of twisted curves and rth roots. Compos. Math. 144(6), 1461–1496 (2008). Preprint version: math.AG/0607324 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chiodo, A., Zvonkine, D.: Twisted Gromov–Witten r-spin potentials and Givental’s quantization. Adv. Theor. Math. Phys. 13(5) (Oct. 2009, to appear) Google Scholar
  9. 9.
    Coates, T.: On the crepant resolution conjecture in the local case. Commun. Math. Phys. (to appear). doi: 10.1007/s00220-008-0715-y
  10. 10.
    Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: Computing genus-zero twisted Gromov–Witten invariants. Duke Math. J. 147(3), 377–438 (2009). Preprint version: math.AG/0611550 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Coates, T., Iritani, H., Tseng, H.-H.: Wall-crossing in Gromov–Witten theory I: crepant examples. Geom. Topol. 13, 2675–2744 (2009) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Coates, T., Givental, A.: Quantum Riemann–Roch, Lefschetz and Serre. Ann. Math. 165(1), 15–53 (2007) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chiodo, A., Ruan, Y.: LG/CY correspondence: the state space isomorphism. Preprint: arXiv:0908.0908
  14. 14.
    Coates, T., Ruan, Y.: Quantum cohomology and crepant resolutions: a conjecture. Preprint: arXiv:0710.5901
  15. 15.
    Faber, C., Shadrin, S., Zvonkine, D.: Tautological relations and the r-spin Witten conjecture. Ann. Sci. Ec. Norm. Super. 43, 4 (2010, to appear) Google Scholar
  16. 16.
    Fan, H., Jarvis, T., Ruan, Y.: Geometry and analysis of spin equations. Commun. Pure Appl. Math. 61(6), 745–788 (2008) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry and quantum singularity theory. Preprint: arXiv:0712.4021v3
  18. 18.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation and its virtual fundamental cycle. Preprint: arXiv:0712.4025
  19. 19.
    Givental, A.: Equivariant Gromov–Witten invariants. Int. Math. Res. Not. 13, 613–663 (1996) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Givental, A.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996). Progr. Math., vol. 160, pp. 141–175 Google Scholar
  21. 21.
    Givental, A.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. In: Frobenius Manifolds. Aspects Math., vol. E36, pp. 91–112. Vieweg, Wiesbaden (2004). Preprint version: math.AG/0108100 Google Scholar
  22. 22.
    Hori, K., Walcher, J.: D-branes from matrix factorizations. Strings 04. Part I. C. R. Phys. 5(9–10), 1061–1070 (2004) MathSciNetGoogle Scholar
  23. 23.
    Horja, P.: Hypergeometric functions and mirror symmetry in toric varieties. Preprint: arXiv:math/9912109
  24. 24.
    Huang, M., Klemm, A., Quackenbush, S.: Topological string theory on compact Calabi–Yau: modularity and boundary conditions. Preprint arXiv:hep-th/0612125
  25. 25.
    Jarvis, T.J.: Geometry of the moduli of higher spin curves. Int. J. Math. 11, 637–663 (2000). math.AG/9809138 MATHMathSciNetGoogle Scholar
  26. 26.
    Jarvis, T.J., Kimura, T., Vaintrob, A.: Moduli spaces of higher spin curves and integrable hierarchies. Compos. Math. 126(2), 157–212 (2001). math.AG/9905034 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Intriligator, K., Vafa, C.: Landau–Ginzburg orbifolds. Nucl. Phys. B 339(1), 95–120 (1990) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222(3), 1016–1079 (2009) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kontsevich, M.: Unpublished Google Scholar
  31. 31.
    Lian, B., Liu, K., Yau, S.-T.: Mirror principle. I. Asian J. Math. 1(4), 729–763 (1997) MATHMathSciNetGoogle Scholar
  32. 32.
    Li, A., Ruan, Y.: Symplectic surgeries and Gromov–Witten invariants of Calabi–Yau 3-folds. Invent. Math. 145, 151–218 (2001) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Maulik, D., Pandharipande, R.: A topological view of Gromov–Witten theory. Topology 45(5), 887–918 (2006) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Orlov, D.: Triangulated categories of singularities and D-branes in Landau–Ginzburg models. Proc. Steklov Inst. Math. 3(246), 227–248 (2004) Google Scholar
  35. 35.
    Polishchuk, A., Vaintrob, A.: Algebraic construction of Witten’s top Chern class. In: Advances in Algebraic Geometry Motivated by Physics, Lowell, MA, 2000. Contemp. Math., vol. 276, pp. 229–249. Am. Math. Soc., Providence (2001). Preprint version: math.AG/0011032 Google Scholar
  36. 36.
    Polishchuk, A.: Witten’s top Chern class on the moduli space of higher spin curves. In: Frobenius Manifolds. Aspects Math., vol. E36, pp. 253–264. Vieweg, Wiesbaden (2004). Preprint version: math.AG/0208112 Google Scholar
  37. 37.
    Ruan, Y.: The Witten equation and geometry of Landau–Ginzburg model (in preparation) Google Scholar
  38. 38.
    Vafa, C., Warner, N.: Catastrophes and the classification of conformal field theories. Phys. Lett. B 218, 51 (1989) CrossRefMathSciNetGoogle Scholar
  39. 39.
    Witten, E.: Two-dimensional gravity and intersection theory on the moduli space. Surv. Differ. Geom. 1, 243–310 (1991) MathSciNetGoogle Scholar
  40. 40.
    Witten, E.: Algebraic geometry associated with matrix models of two-dimensional gravity. In: Topological Models in Modern Mathematics, Stony Brook, NY, 1991, pp. 235–269. Publish or Perish, Houston (1993) Google Scholar
  41. 41.
    Witten, E.: Phases of N=2 theories in two dimensions. Nucl. Phys. B 403, 159–222 (1993) MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Zinger, A.: The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces. J. Am. Math. Soc. 22(3), 691–737 (2009) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut Fourier, UMR du CNRS 5582Université de Grenoble 1Saint Martin d’HèresFrance
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA
  3. 3.Yangtze Center of MathematicsSichuan UniversityChengduP.R. China

Personalised recommendations