Inventiones mathematicae

, Volume 180, Issue 3, pp 589–610 | Cite as

Algebraic A-hypergeometric functions

  • Frits BeukersEmail author
Open Access


We formulate and prove a combinatorial criterion to decide if an A-hypergeometric system of differential equations has a full set of algebraic solutions or not. This criterion generalises the so-called interlacing criterion in the case of hypergeometric functions of one variable.


Hypergeometric Function Polynomial Solution Algebraic Solution Hypergeometric Equation Fuchsian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adolphson, A.: Hypergeometric functions and rings generated by monomials. Duke Math. J. 73, 269–290 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beazley Cohen, P., Wolfart, J.: Algebraic Appell-Lauricella functions. Analysis 12, 359–376 (1992) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Beukers, F., Heckman, G.: Monodromy for the hypergeometric function n F n−1. Invent. Math. 95, 325–354 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dwork, B.: Generalized Hypergeometric Functions. Oxford Mathematical Monographs. Oxford University Press, London (1990) zbMATHGoogle Scholar
  5. 5.
    Dwork, B., Loeser, F.: Hypergeometric series. Jpn. J. Math. (N.S.) 19, 81–129 (1993) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Gelfand, I.M., Graev, M.I., Zelevinsky, A.V.: Holonomic systems of equations and series of hypergeometric type. Dokl. Akad. Nauk SSSR 295, 14–19 (1987) (in Russian) Google Scholar
  7. 7.
    Gelfand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Equations of hypergeometric type and Newton polytopes. Dokl. Akad. Nauk SSSR 300, 529–534 (1988) (in Russian) MathSciNetGoogle Scholar
  8. 8.
    Gelfand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Hypergeometric functions and toric varieties. Funkt. Anal. Prilozhen. 23, 12–26 (1989) (in Russian) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and A-hypergeometric functions. Adv. Math. 84, 255–271 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kato, M.: Appell’s F 4 with finite irreducible monodromy group. Kyushu J. Math. 51, 125–147 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kato, M.: Appell’s hypergeometric systems F 2 with finite irreducible monodromy groups. Kyushu J. Math. 54, 279–305 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Katz, N.M.: Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Invent. Math. 18, 1–118 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Katz, N.M.: A conjecture in the arithmetic theory of differential equations. Bull. SMF 110, 203–239 (1982). Corrections on pp. 347–348 zbMATHGoogle Scholar
  14. 14.
    Kita, M.: On hypergeometric functions in several variables. I. New integral representations of Euler type. Jpn. J. Math. (N.S.) 18, 25–74 (1992) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Matusevich, L.F., Miller, E., Walther, U.: Homological methods for hypergeometric families. J. Am. Math. Soc. 18, 919–941 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sasaki, T.: On the finiteness of the monodromy group of the system of hypergeometric differential equations (F D). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 565–573 (1977) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Schwarz, H.A.: Über diejenigen Fälle, in welchen die Gaussische hypergeometrische reihe eine algebraische Funktion ihres vierten Elements darstellt. J. Reine Angew. Math. 75, 292–335 (1873) Google Scholar
  18. 18.
    Yoshida, M.: Hypergeometric Functions, My Love. Aspects of Mathematics, vol. 32. Vieweg, Wiesbaden (1997) zbMATHGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations