Inventiones mathematicae

, Volume 180, Issue 2, pp 361–388 | Cite as

A Sierpiński carpet with the co-Hopfian property



Motivated by questions in geometric group theory we define a quasisymmetric co-Hopfian property for metric spaces and provide an example of a metric Sierpiński carpet with this property. As an application we obtain a quasi-isometrically co-Hopfian Gromov hyperbolic space with a Sierpiński carpet boundary at infinity. In addition, we give a complete description of the quasisymmetry group of the constructed Sierpiński carpet. This group is uncountable and coincides with the group of bi-Lipschitz transformations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlfors, L.: Lectures on Quasiconformal Mappings. Van Nostrand Mathematical Studies, vol. 10. Van Nostrand, Princeton (1966). Manuscript prepared with the assistance of Clifford J. Earle, Jr. MATHGoogle Scholar
  2. 2.
    Bonk, M., Kleiner, B.: Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math. 150(1), 127–183 (2002) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bonk, M., Schramm, O.: Embeddings of Gromov hyperbolic spaces. Geom. Funct. Anal. 10(2), 266–306 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bourdon, M., Pajot, H.: Rigidity of quasi-isometries for some hyperbolic buildings. Comment. Math. Helv. 75(4), 701–736 (2000) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Buyalo, S., Schroeder, V.: Elements of Asymptotic Geometry. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2007) MATHCrossRefGoogle Scholar
  6. 6.
    David, G., Semmes, S.: Fractured Fractals and Broken Dreams. Self-similar Geometry through Metric and Measure. Oxford Lecture Series in Mathematics and Its Applications, vol. 7. Clarendon/Oxford University Press, New York (1997) MATHGoogle Scholar
  7. 7.
    Farb, B., Handel, M.: Commensurations of Out(Fn). Publ. Math. Inst. Hautes Études Sci. 105, 1–48 (2007) MATHMathSciNetGoogle Scholar
  8. 8.
    Ghys, E., de la Harpe, P. (eds.): Sur les Groupes Hyperboliques d’Après Mikhael Gromov. Progress in Mathematics, vol. 83. Birkhäuser, Boston (1990) MATHGoogle Scholar
  9. 9.
    Gromov, M.: Hyperbolic Groups. Essays in Group Theory. Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–263. Springer, New York (1987) Google Scholar
  10. 10.
    de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2000) MATHGoogle Scholar
  11. 11.
    Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001) MATHGoogle Scholar
  12. 12.
    Kapovich, I., Benakli, N.: Boundaries of hyperbolic groups. In: Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001). Contemp. Math., vol. 296, pp. 39–93. Am. Math. Soc., Providence (2002) Google Scholar
  13. 13.
    Kapovich, I., Wise, D.T.: On the failure of the co-Hopf property for subgroups of word-hyperbolic groups. Isr. J. Math. 122, 125–147 (2001) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kapovich, M., Kleiner, B.: Coarse Alexander duality and duality groups. J. Differ. Geom. 69(2), 279–352 (2005) MATHMathSciNetGoogle Scholar
  15. 15.
    Kapovich, M., Kleiner, B.: Hyperbolic groups with low-dimensional boundary. Ann. Sci. Éc. Norm. Super. (4) 33(5), 647–669 (2000) MATHMathSciNetGoogle Scholar
  16. 16.
    Sela, Z.: Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups. II. Geom. Funct. Anal. 7(3), 561–593 (1997) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tyson, J.: Quasiconformality and quasisymmetry in metric measure spaces. Ann. Acad. Sci. Fenn. Math. 23(2), 525–548 (1998) MathSciNetGoogle Scholar
  18. 18.
    Whyburn, G.T.: Topological characterization of the Sierpiński curve. Fundam. Math. 45, 320–324 (1958) MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations