Inventiones mathematicae

, Volume 179, Issue 3, pp 523–557

Quantum cohomology of the Hilbert scheme of points in the plane

Article

Abstract

We determine the ring structure of the equivariant quantum cohomology of the Hilbert scheme of points of ℂ2. The operator of quantum multiplication by the divisor class is a nonstationary deformation of the quantum Calogero-Sutherland many-body system. A relationship between the quantum cohomology of the Hilbert scheme and the Gromov-Witten/Donaldson-Thomas correspondence for local curves is proven.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behrend, K.: Gromov-Witten invariants in algebraic geometry. Invent. Math. 127, 601–617 (1997) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Behrend, K., Fantechi, B.: The intrinsic normal cone. Invent. Math. 128, 45–88 (1997) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bloch, S.: Semi-regularity and deRham cohomology. Invent. Math. 17, 51–66 (1972) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bryan, J., Graber, T.: The crepant resolution conjecture. math/0610129
  5. 5.
    Bryan, J., Pandharipande, R.: The local Gromov-Witten theory of curves. math.AG/0411037
  6. 6.
    Costello, K., Grojnowski, I.: Hilbert schemes, Hecke algebras and the Calogero-Sutherland system. math.AG/0310189
  7. 7.
    Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry. Am. Math. Soc., Providence (1999) MATHGoogle Scholar
  8. 8.
    Edidin, D., Li, W.-P., Qin, Z.: Gromov-Witten invariants of the Hilbert scheme of 3-points on P 2. Asian J. Math. 7(4), 551–574 (2003) MATHMathSciNetGoogle Scholar
  9. 9.
    Ellingsrud, G., Strømme, S.: Towards the Chow ring of the Hilbert scheme of P 2. J. Reine Angew. Math. 441, 33–44 (1993) MATHMathSciNetGoogle Scholar
  10. 10.
    Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In: Algebraic Geometry, Santa Cruz, 1995. Proc. Sympos. Pure Math., vol. 62, pp. 45–96. Am. Math. Soc., Providence (1997). Part 2 Google Scholar
  11. 11.
    Givental, A.: Semisimple Frobenius structures at higher genus. Int. Math. Res. Not. 23, 1265–1286 (2001) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Givental, A.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Moscow Math. J. 1, 551–568 (2001) MATHMathSciNetGoogle Scholar
  13. 13.
    Göttsche, L.: Hilbert schemes of points on surfaces. In: ICM Proceedings, vol. II, pp. 483–494. Higher Ed. Press, Beijing (2002) Google Scholar
  14. 14.
    Graber, T., Pandharipande, R.: Localization of virtual classes. Invent. Math. 135, 487–518 (1999) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grojnowski, I.: Instantons and affine algebras I: the Hilbert scheme and vertex operators. Math. Res. Lett. 3, 275–291 (1996) MATHMathSciNetGoogle Scholar
  16. 16.
    Lee, Y.-P., Pandharipande, R.: Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints, in preparation (Parts I and II available at www.math.princeton.edu/~rahulp)
  17. 17.
    Lehn, M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136(1), 157–207 (1999) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lehn, M., Sorger, C.: Symmetric groups and the cup product on the cohomology of Hilbert schemes. Duke Math. J. 110(2), 345–357 (2001) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Li, W.-P., Qin, Z., Wang, W.: Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces. Math. Ann. 324(1), 105–133 (2002) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Li, J., Tian, G.: Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Am. Math. Soc. 11, 119–174 (1998) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Macdonald, I.: Symmetric Functions and Hall Polynomials. Clarendon, Oxford (1995) MATHGoogle Scholar
  22. 22.
    Manetti, M.: Lie cylinders and higher obstructions to deforming submanifolds. math.AG/0507278
  23. 23.
    Maulik, D.: Gromov-Witten theory of A n-resolutions. 0802.2681 [math]
  24. 24.
    Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory I. math.AG/0312059
  25. 25.
    Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory II. math.AG/0406092
  26. 26.
    Maulik, D., Oblomkov, A.: Quantum cohomology of the Hilbert scheme of points on A n-resolutions. 0802.2737 [math]
  27. 27.
    Maulik, D., Oblomkov, A.: Donaldson-Thomas theory of A n×P 1. 0802.2739 [math]
  28. 28.
    Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces. Am. Math. Soc., Providence (1999) MATHGoogle Scholar
  29. 29.
    Okounkov, A., Pandharipande, R.: The local Donaldson-Thomas theory of curves. math/0512573
  30. 30.
    Okounkov, A., Pandharipande, R.: The quantum differential equation of the Hilbert scheme of points in the plane. arXiv:0906.3587
  31. 31.
    Ran, Z.: Hodge theory and the Hilbert scheme. J. Differ. Geom. 37, 191–198 (1993) MATHMathSciNetGoogle Scholar
  32. 32.
    Ran, Z.: Semiregularity, obstructions and deformations of Hodge classes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(28), 809–820 (1999) MathSciNetGoogle Scholar
  33. 33.
    Stanley, R.: Some combinatorial properties of Jack symmetric functions. Adv. Math. 77(1), 76–115 (1989) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Vasserot, E.: Sur l’anneau de cohomologie du schéma de Hilbert de C 2. C. R. Acad. Sci. Paris Sér. I Math. 332(1), 7–12 (2001) MATHMathSciNetGoogle Scholar

Copyright information

© copyright by the authors 2009

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations