Inventiones mathematicae

, 179:303

Property (T) for noncommutative universal lattices

Article

Abstract

We establish a new spectral criterion for Kazhdan’s property (T) which is applicable to a large class of discrete groups defined by generators and relations. As the main application, we prove property (T) for the groups ELn(R), where n≥3 and R is an arbitrary finitely generated associative ring. We also strengthen some of the results on property (T) for Kac-Moody groups from (Dymara and Januszkiewicz in Invent. Math. 150(3):579–627, 2002).

Mathematics Subject Classification (2000)

22D10 20F69 20E08 20E18 16S99 20E42 

References

  1. 1.
    Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T). New Math. Monogr., vol. 11. Cambridge University Press, Cambridge (2008) MATHGoogle Scholar
  2. 2.
    Brown, N.P., Ozawa, N.: C *-algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, vol. 88. Am. Math. Soc., Providence (2008) MATHGoogle Scholar
  3. 3.
    Burger, M.: Kazhdan constants for SL(3ℤ). J. Reine Angew. Math. 413, 36–67 (1991) MATHMathSciNetGoogle Scholar
  4. 4.
    de Cornulier, Y.: Relative Kazhdan property. Ann. Sci. École Norm. Sup. (4) 39(2), 301–333 (2006) MATHGoogle Scholar
  5. 5.
    Douglas, R.S.: Banach Algebras Techniques in Operator Theory, 2nd edn. Springer, New York (1998) Google Scholar
  6. 6.
    Dymara, J., Januszkiewicz, T.: Cohomology of buildings and their automorphism groups. Invent. Math. 150(3), 579–627 (2002) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ershov, M.: Golod-Shafarevich groups with property (T) and Kac-Moody groups. Duke Math. J. 145(2), 309–339 (2008) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kassabov, M.: Kazhdan constants for SLn(ℤ). Int. J. Algebra Comput. 15(5–6), 971–995 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kassabov, M.: Universal lattices and unbounded rank expanders. Invent. Math. 170(2), 297–326 (2007) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kassabov, M., Nikolov, N.: Universal lattices and property (τ). Invent. Math. 165(1), 209–224 (2006) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kazhdan, D.: On the connection of the dual space of a group with the structure of its closed subgroups. Funkcional. Anal. i Priložen. 1, 71–74 (1967) (Russian) Google Scholar
  12. 12.
    Krstić, S., McCool, J.: Presenting GLn(kT〉). J. Pure Appl. Algebra 141(2), 175–183 (1999) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lubotzky, A., Magid, A.R.: Varieties of representations of finitely generated groups. Mem. Am. Math. Soc. 58(336) (1985) Google Scholar
  14. 14.
    Lubotzky, A., Weiss, B.: Groups and expanders. In: Expanding Graphs, Princeton, 1992. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 10, pp. 95–109. Am. Math. Soc., Providence (1993) Google Scholar
  15. 15.
    Milnor, J.: Introduction to Algebraic K-theory. Annals of Math. Studies, vol. 72. Princeton University Press, Princeton (1971) Google Scholar
  16. 16.
    Shalom, Y.: Bounded generation and Kazhdan’s property (T). Inst. Hautes Études Sci. Publ. Math. 90, 145–168 (1999) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shalom, Y.: Rigidity of commensurators and irreducible lattices. Invent. Math. 141(1), 1–54 (2000) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shalom, Y.: The algebraization of Kazhdan’s property (T). In: International Congress of Mathematicians, vol. II, pp. 1283–1310. Eur. Math. Soc., Zürich (2006) Google Scholar
  19. 19.
    Vaserstein, L.: Bounded reduction of invertible matrices over polynomial rings by addition operations, preprint (2007) Google Scholar
  20. 20.
    Żuk, A.: Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal. 13(3), 643–670 (2003) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.Departamento de Matematicas UAMInstituto de Ciencias Matematicas CSIC-UAM-UC3M-UCMMadridSpain

Personalised recommendations