Inventiones mathematicae

, 179:75

Representation of certain homogeneous Hilbertian operator spaces and applications



Following Grothendieck’s characterization of Hilbert spaces we consider operator spaces F such that both F and F* completely embed into the dual of a C*-algebra. Due to Haagerup/Musat’s improved version of Pisier/Shlyakhtenko’s Grothendieck inequality for operator spaces, these spaces are quotients of subspaces of the direct sum CR of the column and row spaces (the corresponding class being denoted by QS(CR)). We first prove a representation theorem for homogeneous FQS(CR) starting from the fundamental sequences
$$\Phi _{c}(n)=\Bigg\|\sum_{k=1}^ne_{k1}\otimes e_k\Bigg\|_{C\otimes _{\min}F}^2\quad\mbox{and}\quad \Phi _{r}(n)=\Bigg\|\sum_{k=1}^ne_{1k}\otimes e_k\Bigg\|_{R\otimes _{\min}F}^2$$
given by an orthonormal basis (ek) of F. Under a mild regularity assumption on these sequences we show that they completely determine the operator space structure of F and find a canonical representation of this important class of homogeneous Hilbertian operator spaces in terms of weighted row and column spaces. This canonical representation allows us to get an explicit formula for the exactness constant of an n-dimensional subspace Fn of F:
$$\mathit{ex}(F_n)\sim\biggl[\frac{n}{ \Phi _{c}(n)}\Phi _{r}\bigg(\frac{ \Phi _{c}(n)}{\Phi _{r}(n)}\bigg)+\frac{n}{ \Phi _{r}(n)}\Phi _{c}\bigg(\frac{ \Phi _{r}(n)}{\Phi _{c}(n)}\bigg)\biggr]^{1/2}.$$
In the same way, the projection (=injectivity) constant of Fn is explicitly expressed in terms of Φc and Φr too. Orlicz space techniques play a crucial role in our arguments. They also permit us to determine the completely 1-summing maps in Effros and Ruan’s sense between two homogeneous spaces E and F in QS(CR). The resulting space Π1o(E, F) isomorphically coincides with a Schatten-Orlicz class Sφ. Moreover, the underlying Orlicz function φ is uniquely determined by the fundamental sequences of E and F. In particular, applying these results to the column subspace Cp of the Schatten p-class, we find the projection and exactness constants of Cpn, and determine the completely 1-summing maps from Cp to Cq for any 1≤p, q≤∞.

Mathematics Subject Classification (2000)

46L07 47L25 


  1. 1.
    Bourgain, J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21, 163–168 (1983) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Burkholder, D.L.: A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9, 997–1011 (1981) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burkholder, D.L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth Math. Ser., vols. I, II, Chicago, Ill., 1981, pp. 270–286. Wadsworth, Belmont (1983) Google Scholar
  4. 4.
    Effros, Ed., Ruan, Z.-J.: The Grothendieck-Pietsch and Dvoretzky-Rogers theorems for operator spaces. J. Funct. Anal. 122, 428–450 (1994) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Effros, Ed., Ruan, Z.-J.: Operator Spaces. Clarendon Press/Oxford University Press, New York (2000) MATHGoogle Scholar
  6. 6.
    Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. American Mathematical Society, Providence (1969) MATHGoogle Scholar
  7. 7.
    Haagerup, U., Musat, M.: On the best constants in noncommutative Khintchine-type inequalities. J. Funct. Anal. 250, 588–624 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Haagerup, U., Musat, M.: The Effros-Ruan conjecture for bilinear forms on C*-algebras. Invent. Math. 174, 139–163 (2008) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Junge, M.: Factorization Theory for Spaces of Operators. Habilitationsschrift, Kiel (1996) Google Scholar
  10. 10.
    Junge, M.: Embedding of the operator space OH and the logarithmic ‘little Grothendieck inequality’. Invent. Math. 161, 225–286 (2005) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Junge, M.: Operator spaces and Araki-Woods factors: a quantum probabilistic approach. IMRP Int. Math. Res. Pap., pp. Art. ID 76978, 87 (2006) Google Scholar
  12. 12.
    Kirchberg, E.: On nonsemisplit extensions, tensor products and exactness of group C *-algebras. Invent. Math. 112, 449–489 (1993) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kirchberg, E.: Exact C *-algebras, tensor products, and the classification of purely infinite algebras. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 Zürich, 1994, pp. 943–954. Birkhäuser, Basel (1995) Google Scholar
  14. 14.
    Kirchberg, E.: On subalgebras of the CAR-algebra. J. Funct. Anal. 129, 35–63 (1995) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Springer, Berlin (1977) MATHGoogle Scholar
  16. 16.
    Oikhberg, T., Ricard, É: Operator spaces with few completely bounded maps. Math. Ann. 328, 229–259 (2004) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pisier, G.: Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, vol. 60. Conference Board of the Mathematical Sciences, Washington (1986) Google Scholar
  18. 18.
    Pisier, G.: Exact operator spaces. Astérisque 232, 159–186 (1995). Recent advances in operator algebras (Orléans, 1992) MathSciNetGoogle Scholar
  19. 19.
    Pisier, G.: The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Am. Math. Soc. 122(585), viii+103 (1996) MathSciNetGoogle Scholar
  20. 20.
    Pisier, G.: Non-commutative vector valued L p-spaces and completely p-summing maps. Astérisque 1(247), vi+131 (1998) MathSciNetGoogle Scholar
  21. 21.
    Pisier, G.: Introduction to Operator Space Theory. Cambridge University Press, Cambridge (2003) MATHGoogle Scholar
  22. 22.
    Pisier, G.: Completely bounded maps into certain Hilbertian operator spaces. Int. Math. Res. Not. 1(74), 3983–4018 (2004) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Pisier, G., Shlyakhtenko, D.: Grothendieck’s theorem for operator spaces. Invent. Math. 150, 185–217 (2002) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Simon, B.: Trace Ideals and Their Applications. Cambridge University Press, Cambridge (1979) MATHGoogle Scholar
  25. 25.
    Xu, Q.: Embedding of C q and R q into noncommutative L p-spaces, 1≤p<q≤2. Math. Ann. 335, 109–131 (2006) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Yew, K.-L.: Completely p-summing maps on the operator Hilbert space OH. J. Funct. Anal. 255, 1362–1402 (2008) MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA
  2. 2.Laboratoire de MathématiquesUniversité de Franche-ComtéBesançon CedexFrance

Personalised recommendations