Inventiones mathematicae

, 178:505 | Cite as

Serre’s modularity conjecture (II)

Article

Abstract

We provide proofs of Theorems 4.1 and 5.1 of Khare and Wintenberger (Invent. Math., doi: 10.1007/s00222-009-0205-7, 2009).

References

  1. 1.
    Artin, E., Tate, J.: Class Field Theory. Reprinted with Corrections from the 1967 Original. Chelsea, Providence (2009) Google Scholar
  2. 2.
    Berger, L.: Limites de représentations cristallines. Compos. Math. 140(6), 1473–1498 (2004) MathSciNetMATHGoogle Scholar
  3. 3.
    Berger, L., Li, H., Zhu, H.J.: Construction of some families of 2-dimensional crystalline representations. Math. Ann. 329(2), 365–377 (2004) CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Böckle, G.: Presentations of Universal Deformation Rings, L-Functions and Galois Representations. London Math. Soc. Lecture Note Ser. vol. 320, pp. 24–58. Cambridge Univ. Press, Cambridge (2007) Google Scholar
  5. 5.
    Böckle, G., Khare, C.: Mod representations of arithmetic fundamental groups II. Compos. Math. 142, 271–294 (2006) CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Breuil, C.: Une remarque sur les représentations locales p-adiques et les congruences entre formes modulaires de Hilbert. Bull. Soc. Math. France 127(3), 459–472 (1999) MathSciNetMATHGoogle Scholar
  7. 7.
    Buzzard, K.: On level-lowering for mod 2 representations. Math. Res. Lett. 7(1), 95–110 (2000) MathSciNetMATHGoogle Scholar
  8. 8.
    Carayol, H.: Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. Sci. École Norm. Sup. (4) 19(3), 409–468 (1986) MathSciNetMATHGoogle Scholar
  9. 9.
    Carayol, H.: Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet. In: p-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, Boston, MA, 1991. Contemp. Math., vol. 165, pp. 213–237. Am. Math. Soc., Providence (1994) Google Scholar
  10. 10.
    Coleman, R., Voloch, J.F.: Companion forms and Kodaira-Spencer theory. Invent. Math. 110(2), 263–281 (1992) CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Conrad, B., Diamond, F., Taylor, R.: Modularity of certain potentially Barsotti-Tate Galois representations. J. Am. Math. Soc. 12(2), 521–567 (1999) CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Darmon, H., Diamond, F., Taylor, R.: Fermat’s last theorem. In: Current Developments in Mathematics, Cambridge, MA, 1995, pp. 1–154. Internat. Press, Cambridge (1994) Google Scholar
  13. 13.
    de Jong, A.J.: A conjecture on arithmetic fundamental groups. Israel J. Math. 121, 61–84 (2001) CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Demazure, M., Grothendieck, A.: Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux. Séminaire de Géométrie Algébrique du Bois Marie 1962/1964 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, vol. 152. Springer, Berlin (1962/1996) Google Scholar
  15. 15.
    Diamond, F.: On deformation rings and Hecke rings. Ann. Math. 144, 137–166 (1996) CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Diamond, F.: The Taylor-Wiles construction and multiplicity one. Invent. Math 128(2), 379–391 (1997) CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Diamond, F.: An extension of Wiles’ results. In: Modular Forms and Fermat’s Last Theorem, Boston, MA, 1995, pp. 475–489. Springer, New York (1997) Google Scholar
  18. 18.
    Diamond, F., Flach, M., Guo, L.: The Tamagawa number conjecture of adjoint motives of modular forms. Ann. Sci. École Norm. Sup. (4) 37(5), 663–727 (2004) MathSciNetMATHGoogle Scholar
  19. 19.
    Dickinson, M.: On the modularity of certain 2-adic Galois representations. Duke Math. J. 109(2), 319–382 (2001) CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Dieulefait, L.: Existence of families of Galois representations and new cases of the Fontaine-Mazur conjecture. J. Reine Angew. Math. 577, 147–151 (2004) MathSciNetMATHGoogle Scholar
  21. 21.
    Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992) CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Edixhoven, B., Khare, C.: Hasse invariant and group cohomology. Doc. Math. 8, 43–50 (2003) (electronic) MathSciNetMATHGoogle Scholar
  23. 23.
    Fontaine, J.-M.: Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate. Ann. Math. 115, 529–577 (1982) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Fontaine, J.-M., Laffaille, G.: Construction de représentations p-adiques. Ann. Sci. École Norm. Sup. (4) 15(4), 547–608 (1982) MathSciNetMATHGoogle Scholar
  25. 25.
    Gross, B.: A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J. 61(2), 445–517 (1990) CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Hida, H.: Congruence of cusp forms and special values of their zeta functions. Invent. Math. 63(2), 225–261 (1981) CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Hida, H.: Galois representations into GL2(ℤp[[X]]) attached to ordinary cusp forms. Invent. Math. 85(3), 545–613 (1986) CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Hida, H.: On p-adic Hecke algebras for GL2 over totally real fields. Ann. Math. (2) 128(2), 295–384 (1988) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Katz, N., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Annals of Mathematics Studies, vol. 108. Princeton University Press, Princeton (1985) MATHGoogle Scholar
  30. 30.
    Khare, C.: Serre’s modularity conjecture: the level one case. Duke Math. J. 134(3), 534–567 (2006) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Khare, C., Wintenberger, J.-P.: On Serre’s conjecture for 2-dimensional mod p representations of \(\mathrm {Gal}(\bar {{\mathbb{Q}}}/{\mathbb{Q}})\) . Ann. Math. 169(1), 229–253 (2009) CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture (I). Invent. Math. (2009). doi: 10.1007/s00222-009-0205-7
  33. 33.
    Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. Math. (to appear) Google Scholar
  34. 34.
    Kisin, M.: Modularity of some geometric Galois representations. L-functions and Galois Representations, Durham, 2004, pp. 438–470 Google Scholar
  35. 35.
    Kisin, M.: Modularity of potentially Barsotti-Tate representations. Curr. Dev. Math. 191–230 (2005) Google Scholar
  36. 36.
    Kisin, M.: Potentially semi-stable deformation rings. J. Am. Math. Soc. 21(2), 513–546 (2008) CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    Langlands, R.: Base Change for GL2. Annals of Math. Series. Princeton University Press, Princeton (1980) MATHGoogle Scholar
  38. 38.
    Matsumura, H.: Commutative Algebra. Benjamin, Elmsford (1970) MATHGoogle Scholar
  39. 39.
    Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989) MATHGoogle Scholar
  40. 40.
    Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1977/1978) CrossRefMathSciNetMATHGoogle Scholar
  41. 41.
    Mazur, B.: Deforming Galois representations. In: Galois Groups over ℚ, Berkeley, CA, 1987. Math. Sci. Res. Inst. Publ., vol. 16, pp. 385–437. Springer, New York (1989) Google Scholar
  42. 42.
    Mazur, B.: An Introduction to the Deformation Theory of Galois Representations. Modular Forms and Fermat’s Last Theorem, Boston, MA, 1995, pp. 243–311. Springer, New York (1997), Google Scholar
  43. 43.
    Mokrane, A.: Quelques remarques sur l’ordinarité. J. Number Theory 73(2), 162–181 (1998) CrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    Moret-Bailly, L.: Groupes de Picard et problèmes de Skolem, I. Ann. Sci. École Norm. Sup. (4) 22, 161–179 (1989) MathSciNetMATHGoogle Scholar
  45. 45.
    Moret-Bailly, L.: Groupes de Picard et problèmes de Skolem, II. Ann. Sci. École Norm. Sup. (4) 22, 181–194 (1989) MathSciNetMATHGoogle Scholar
  46. 46.
    Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323. Springer, Berlin (2000) MATHGoogle Scholar
  47. 47.
    Ramakrishna, R.: On a variation of Mazur’s deformation functor. Compos. Math. 87(3), 269–286 (1993) MathSciNetMATHGoogle Scholar
  48. 48.
    Ribet, K.A.: Congruence Relations Between Modular Forms. Proceedings of the International Congress of Mathematicians, vols. 1, 2, Warsaw, 1983, pp. 503–514. PWN, Warsaw (1984) Google Scholar
  49. 49.
    Ribet, K.A.: On modular representations of \(\mathrm{Gal}(\overline{Q}/Q)\) arising from modular forms. Invent. Math. 100(2), 431–476 (1990) CrossRefMathSciNetMATHGoogle Scholar
  50. 50.
    Saito, T.: Modular forms and p-adic Hodge theory. Preprint math.AG/0612077
  51. 51.
    Savitt, D.: On a conjecture of Conrad. Diamond, and Taylor, Duke Math. J. 128(1), 141–197 (2005) CrossRefMathSciNetMATHGoogle Scholar
  52. 52.
    Schlessinger, M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968) CrossRefMathSciNetMATHGoogle Scholar
  53. 53.
    Serre, J.-P.: Sur les représentations modulaires de degré 2 de \(\mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})\) . Duke Math. J. 54(1), 179–230 (1987) CrossRefMathSciNetMATHGoogle Scholar
  54. 54.
    Skinner, C., Wiles, A.: Base change and a problem of Serre. Duke Math. 107(1), 15–25 (2001) CrossRefMathSciNetMATHGoogle Scholar
  55. 55.
    Taylor, R.: On Galois representations associated to Hilbert modular forms. Invent. Math. 98(2), 265–280 (1989) CrossRefMathSciNetMATHGoogle Scholar
  56. 56.
    Taylor, R.: On Galois representations associated to Hilbert modular forms II. In: Current Developments in Mathematics, Cambridge, MA, 1995, pp. 333–340. Internat. Press, Cambridge (1994) Google Scholar
  57. 57.
    Taylor, R.: Remarks on a conjecture of Fontaine and Mazur. Inst. Math. Jussieu 1(1), 125–143 (2002) MathSciNetMATHGoogle Scholar
  58. 58.
    Taylor, R.: On icosahedral Artin representations. II. Am. J. Math. 125(3), 549–566 (2003) CrossRefMATHGoogle Scholar
  59. 59.
    Taylor, R.: Galois representations. Ann. Fac. Sci. Toulouse 13, 73–119 (2004) MATHGoogle Scholar
  60. 60.
    Taylor, R.: On the meromorphic continuation of degree two L-functions. Documenta Math. Extra Volume: John H. Coates’ Sixtieth Birthday (2006) 729–779 Google Scholar
  61. 61.
    Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995) CrossRefMathSciNetMATHGoogle Scholar
  62. 62.
    Tunnell, J.: Artin conjecture for representations of octahedral type. Bull. Am. Math. Soc. 5, 173–175 (1981) CrossRefMathSciNetMATHGoogle Scholar
  63. 63.
    Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995) CrossRefMathSciNetMATHGoogle Scholar
  64. 64.
    Wintenberger, J.-P.: On p-adic geometric representations of G . Documenta Math. Extra Volume: John H. Coates’ Sixtieth Birthday (2006) 819–827 Google Scholar
  65. 65.
    Wintenberger, J.-P.: Modularity of 2-adic Galois representations (j.w. with Chandrashekhar Khare). Oberwolfach Reports, http://www.mfo.de/, Arithmetic Algebraic Geometry, August 3rd–August 9rd, 2008
  66. 66.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. II, Reprint of the 1960 edition, Graduate Texts in Mathematics, vol. 29. Springer, New York (1975) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Chandrashekhar Khare
    • 1
  • Jean-Pierre Wintenberger
    • 2
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Département de MathématiqueUniversité de StrasbourgStrasbourg CedexFrance

Personalised recommendations