Advertisement

Inventiones mathematicae

, 178:505 | Cite as

Serre’s modularity conjecture (II)

  • Chandrashekhar Khare
  • Jean-Pierre Wintenberger
Article

Abstract

We provide proofs of Theorems 4.1 and 5.1 of Khare and Wintenberger (Invent. Math., doi: 10.1007/s00222-009-0205-7, 2009).

Keywords

Modular Form Maximal Ideal Galois Group Galois Representation Deformation Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Artin, E., Tate, J.: Class Field Theory. Reprinted with Corrections from the 1967 Original. Chelsea, Providence (2009) Google Scholar
  2. 2.
    Berger, L.: Limites de représentations cristallines. Compos. Math. 140(6), 1473–1498 (2004) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berger, L., Li, H., Zhu, H.J.: Construction of some families of 2-dimensional crystalline representations. Math. Ann. 329(2), 365–377 (2004) CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Böckle, G.: Presentations of Universal Deformation Rings, L-Functions and Galois Representations. London Math. Soc. Lecture Note Ser. vol. 320, pp. 24–58. Cambridge Univ. Press, Cambridge (2007) Google Scholar
  5. 5.
    Böckle, G., Khare, C.: Mod representations of arithmetic fundamental groups II. Compos. Math. 142, 271–294 (2006) CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Breuil, C.: Une remarque sur les représentations locales p-adiques et les congruences entre formes modulaires de Hilbert. Bull. Soc. Math. France 127(3), 459–472 (1999) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Buzzard, K.: On level-lowering for mod 2 representations. Math. Res. Lett. 7(1), 95–110 (2000) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Carayol, H.: Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. Sci. École Norm. Sup. (4) 19(3), 409–468 (1986) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Carayol, H.: Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet. In: p-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, Boston, MA, 1991. Contemp. Math., vol. 165, pp. 213–237. Am. Math. Soc., Providence (1994) Google Scholar
  10. 10.
    Coleman, R., Voloch, J.F.: Companion forms and Kodaira-Spencer theory. Invent. Math. 110(2), 263–281 (1992) CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Conrad, B., Diamond, F., Taylor, R.: Modularity of certain potentially Barsotti-Tate Galois representations. J. Am. Math. Soc. 12(2), 521–567 (1999) CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Darmon, H., Diamond, F., Taylor, R.: Fermat’s last theorem. In: Current Developments in Mathematics, Cambridge, MA, 1995, pp. 1–154. Internat. Press, Cambridge (1994) Google Scholar
  13. 13.
    de Jong, A.J.: A conjecture on arithmetic fundamental groups. Israel J. Math. 121, 61–84 (2001) CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Demazure, M., Grothendieck, A.: Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux. Séminaire de Géométrie Algébrique du Bois Marie 1962/1964 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, vol. 152. Springer, Berlin (1962/1996) Google Scholar
  15. 15.
    Diamond, F.: On deformation rings and Hecke rings. Ann. Math. 144, 137–166 (1996) CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Diamond, F.: The Taylor-Wiles construction and multiplicity one. Invent. Math 128(2), 379–391 (1997) CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Diamond, F.: An extension of Wiles’ results. In: Modular Forms and Fermat’s Last Theorem, Boston, MA, 1995, pp. 475–489. Springer, New York (1997) Google Scholar
  18. 18.
    Diamond, F., Flach, M., Guo, L.: The Tamagawa number conjecture of adjoint motives of modular forms. Ann. Sci. École Norm. Sup. (4) 37(5), 663–727 (2004) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dickinson, M.: On the modularity of certain 2-adic Galois representations. Duke Math. J. 109(2), 319–382 (2001) CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Dieulefait, L.: Existence of families of Galois representations and new cases of the Fontaine-Mazur conjecture. J. Reine Angew. Math. 577, 147–151 (2004) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992) CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Edixhoven, B., Khare, C.: Hasse invariant and group cohomology. Doc. Math. 8, 43–50 (2003) (electronic) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Fontaine, J.-M.: Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate. Ann. Math. 115, 529–577 (1982) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Fontaine, J.-M., Laffaille, G.: Construction de représentations p-adiques. Ann. Sci. École Norm. Sup. (4) 15(4), 547–608 (1982) MathSciNetzbMATHGoogle Scholar
  25. 25.
    Gross, B.: A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J. 61(2), 445–517 (1990) CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Hida, H.: Congruence of cusp forms and special values of their zeta functions. Invent. Math. 63(2), 225–261 (1981) CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Hida, H.: Galois representations into GL2(ℤp[[X]]) attached to ordinary cusp forms. Invent. Math. 85(3), 545–613 (1986) CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Hida, H.: On p-adic Hecke algebras for GL2 over totally real fields. Ann. Math. (2) 128(2), 295–384 (1988) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Katz, N., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Annals of Mathematics Studies, vol. 108. Princeton University Press, Princeton (1985) zbMATHGoogle Scholar
  30. 30.
    Khare, C.: Serre’s modularity conjecture: the level one case. Duke Math. J. 134(3), 534–567 (2006) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Khare, C., Wintenberger, J.-P.: On Serre’s conjecture for 2-dimensional mod p representations of \(\mathrm {Gal}(\bar {{\mathbb{Q}}}/{\mathbb{Q}})\) . Ann. Math. 169(1), 229–253 (2009) CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture (I). Invent. Math. (2009). doi: 10.1007/s00222-009-0205-7
  33. 33.
    Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. Math. (to appear) Google Scholar
  34. 34.
    Kisin, M.: Modularity of some geometric Galois representations. L-functions and Galois Representations, Durham, 2004, pp. 438–470 Google Scholar
  35. 35.
    Kisin, M.: Modularity of potentially Barsotti-Tate representations. Curr. Dev. Math. 191–230 (2005) Google Scholar
  36. 36.
    Kisin, M.: Potentially semi-stable deformation rings. J. Am. Math. Soc. 21(2), 513–546 (2008) CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Langlands, R.: Base Change for GL2. Annals of Math. Series. Princeton University Press, Princeton (1980) zbMATHGoogle Scholar
  38. 38.
    Matsumura, H.: Commutative Algebra. Benjamin, Elmsford (1970) zbMATHGoogle Scholar
  39. 39.
    Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989) zbMATHGoogle Scholar
  40. 40.
    Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1977/1978) CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Mazur, B.: Deforming Galois representations. In: Galois Groups over ℚ, Berkeley, CA, 1987. Math. Sci. Res. Inst. Publ., vol. 16, pp. 385–437. Springer, New York (1989) Google Scholar
  42. 42.
    Mazur, B.: An Introduction to the Deformation Theory of Galois Representations. Modular Forms and Fermat’s Last Theorem, Boston, MA, 1995, pp. 243–311. Springer, New York (1997), Google Scholar
  43. 43.
    Mokrane, A.: Quelques remarques sur l’ordinarité. J. Number Theory 73(2), 162–181 (1998) CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Moret-Bailly, L.: Groupes de Picard et problèmes de Skolem, I. Ann. Sci. École Norm. Sup. (4) 22, 161–179 (1989) MathSciNetzbMATHGoogle Scholar
  45. 45.
    Moret-Bailly, L.: Groupes de Picard et problèmes de Skolem, II. Ann. Sci. École Norm. Sup. (4) 22, 181–194 (1989) MathSciNetzbMATHGoogle Scholar
  46. 46.
    Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323. Springer, Berlin (2000) zbMATHGoogle Scholar
  47. 47.
    Ramakrishna, R.: On a variation of Mazur’s deformation functor. Compos. Math. 87(3), 269–286 (1993) MathSciNetzbMATHGoogle Scholar
  48. 48.
    Ribet, K.A.: Congruence Relations Between Modular Forms. Proceedings of the International Congress of Mathematicians, vols. 1, 2, Warsaw, 1983, pp. 503–514. PWN, Warsaw (1984) Google Scholar
  49. 49.
    Ribet, K.A.: On modular representations of \(\mathrm{Gal}(\overline{Q}/Q)\) arising from modular forms. Invent. Math. 100(2), 431–476 (1990) CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Saito, T.: Modular forms and p-adic Hodge theory. Preprint math.AG/0612077
  51. 51.
    Savitt, D.: On a conjecture of Conrad. Diamond, and Taylor, Duke Math. J. 128(1), 141–197 (2005) CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Schlessinger, M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968) CrossRefMathSciNetzbMATHGoogle Scholar
  53. 53.
    Serre, J.-P.: Sur les représentations modulaires de degré 2 de \(\mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})\) . Duke Math. J. 54(1), 179–230 (1987) CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    Skinner, C., Wiles, A.: Base change and a problem of Serre. Duke Math. 107(1), 15–25 (2001) CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    Taylor, R.: On Galois representations associated to Hilbert modular forms. Invent. Math. 98(2), 265–280 (1989) CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    Taylor, R.: On Galois representations associated to Hilbert modular forms II. In: Current Developments in Mathematics, Cambridge, MA, 1995, pp. 333–340. Internat. Press, Cambridge (1994) Google Scholar
  57. 57.
    Taylor, R.: Remarks on a conjecture of Fontaine and Mazur. Inst. Math. Jussieu 1(1), 125–143 (2002) MathSciNetzbMATHGoogle Scholar
  58. 58.
    Taylor, R.: On icosahedral Artin representations. II. Am. J. Math. 125(3), 549–566 (2003) CrossRefzbMATHGoogle Scholar
  59. 59.
    Taylor, R.: Galois representations. Ann. Fac. Sci. Toulouse 13, 73–119 (2004) zbMATHGoogle Scholar
  60. 60.
    Taylor, R.: On the meromorphic continuation of degree two L-functions. Documenta Math. Extra Volume: John H. Coates’ Sixtieth Birthday (2006) 729–779 Google Scholar
  61. 61.
    Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995) CrossRefMathSciNetzbMATHGoogle Scholar
  62. 62.
    Tunnell, J.: Artin conjecture for representations of octahedral type. Bull. Am. Math. Soc. 5, 173–175 (1981) CrossRefMathSciNetzbMATHGoogle Scholar
  63. 63.
    Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995) CrossRefMathSciNetzbMATHGoogle Scholar
  64. 64.
    Wintenberger, J.-P.: On p-adic geometric representations of G . Documenta Math. Extra Volume: John H. Coates’ Sixtieth Birthday (2006) 819–827 Google Scholar
  65. 65.
    Wintenberger, J.-P.: Modularity of 2-adic Galois representations (j.w. with Chandrashekhar Khare). Oberwolfach Reports, http://www.mfo.de/, Arithmetic Algebraic Geometry, August 3rd–August 9rd, 2008
  66. 66.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. II, Reprint of the 1960 edition, Graduate Texts in Mathematics, vol. 29. Springer, New York (1975) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Chandrashekhar Khare
    • 1
  • Jean-Pierre Wintenberger
    • 2
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Département de MathématiqueUniversité de StrasbourgStrasbourg CedexFrance

Personalised recommendations