Inventiones mathematicae

, 178:485

Serre’s modularity conjecture (I)

Article

Abstract

This paper is the first part of a work which proves Serre’s modularity conjecture. We first prove the cases \(p\not=2\) and odd conductor, and p=2 and weight 2, see Theorem 1.2, modulo Theorems 4.1 and 5.1. Theorems 4.1 and 5.1 are proven in the second part, see Khare and Wintenberger (Invent. Math., doi:10.1007/s00222-009-0206-6, 2009). We then reduce the general case to a modularity statement for 2-adic lifts of modular mod 2 representations. This statement is now a theorem of Kisin (Invent. Math., doi:10.1007/s00222-009-0207-5, 2009).

References

  1. 1.
    Artin, E.: Über eine neue Art von L-Reihen. Abh. Math. Sem. Univ. Hamb. 3, 89–108 (1923) CrossRefGoogle Scholar
  2. 2.
    Artin, E.: Zur Theorie de L-Reihen mit allgemeinen Gruppencharakteren. Abh. Math. Sem. Univ. Hamb. 8, 292–306 (1930) CrossRefMATHGoogle Scholar
  3. 3.
    Brauer, R.: On Artin’s L-series with general group characters. Ann. Math. 48, 502–514 (1947) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Breuil, C.: Groupes p-divisibles, groupes finis et modules filtrés. Ann. Math. 152, 489–549 (2000) CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Buzzard, K., Dickinson, M., Shepherd-Barron, N., Taylor, R.: On icosahedral Artin representations. Duke Math. J. 109(2), 283–318 (2001) CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Buzzard, K.: On level-lowering for mod 2 representations. Math. Res. Lett. 7(1), 95–110 (2000) MathSciNetMATHGoogle Scholar
  7. 7.
    Carayol, H.: Sur les représentations galoisiennes modulo attachées aux formes modulaires. Duke Math. J. 59(3), 785–801 (1989) CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Coleman, R., Voloch, J.F.: Companion forms and Kodaira-Spencer theory. Invent. Math. 110(2), 263–281 (1992) CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Deligne, P.: Les constantes des équations fonctionnelles des fonctions L. In: Modular Functions of One Variable, II, Proc. Internat. Summer School, Univ. Antwerp, 1972. Lecture Notes in Math., vol. 349, pp. 501–597. Springer, Berlin (1973) CrossRefGoogle Scholar
  10. 10.
    Deligne, P., Serre, J.-P.: Formes modulaires de poids 1. Ann. Sci. Éc. Norm. Supér. Sér. 4(7/4), 507–530 (1974) MathSciNetGoogle Scholar
  11. 11.
    Diamond, F.: The Taylor-Wiles construction and multiplicity one. Invent. Math. 128(2), 379–391 (1997) CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Diamond, F.: An extension of Wiles’ results. In: Modular Forms and Fermat’s Last Theorem, Boston, MA, 1995, pp. 475–489. Springer, New York (1997) Google Scholar
  13. 13.
    Dickinson, M.: On the modularity of certain 2-adic Galois representations. Duke Math. J. 109(2), 319–382 (2001) CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992) CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Edixhoven, B.: Serre’s conjecture. In: Modular Forms and Fermat’s Last Theorem, Boston, MA, 1995, pp. 209–242. Springer, New York (1997) Google Scholar
  16. 16.
    Fujiwara, K.: Deformation rings and Hecke algebras in the totally real case. Preprint, arXiv:math/0602606
  17. 17.
    Fontaine, J.-M., Mazur, B.: Geometric Galois representations. In: Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Hong Kong, 1993. Ser. Number Theory, I, pp. 41–78. Internat. Press, Cambridge (1995) Google Scholar
  18. 18.
    Godement, R., Jacquet, H.: Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, vol. 260, Springer, New York (1972) MATHGoogle Scholar
  19. 19.
    Gross, B.: A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J. 61(2), 445–517 (1990) CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967) MATHGoogle Scholar
  21. 21.
    Khare, C.: Remarks on mod p forms of weight one. Int. Math. Res. Not. 3, 127–133 (1997). Corrigendum: IMRN 1999, no. 18, p. 1029 CrossRefMathSciNetGoogle Scholar
  22. 22.
    Khare, C.: Serre’s modularity conjecture: The level one case. Duke Math. J. 134(3), 557–589 (2006) CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Khare, C.: Serre’s modularity conjecture: a survey of the level one case. In: Buzzard, Burns, Nekovar (eds.) Proceedings of the LMS Conference on L-Functions and Galois Representations, Durham, 2004. London Math. Soc. Lecture Note Ser., vol. 320, pp. 270–299. Cambridge Univ. Press, Cambridge (2007) Google Scholar
  24. 24.
    Khare, C., Wintenberger, J.-P.: On Serre’s conjecture for 2-dimensional mod p representations of \(\mathrm {Gal}(\bar {\mathbb {Q}}/\mathbb {Q})\) . Ann. Math. 169(1), 229–253 (2009) CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture (II). Invent. Math. (2009). doi:10.1007/s00222-009-0206-6 Google Scholar
  26. 26.
    Kisin, M.: Crystalline representations and F-crystals. In: Algebraic Geometry and Number Theory. Progr. Math., vol. 253, pp. 459–496. Birkhäuser Boston, Boston (2006) CrossRefGoogle Scholar
  27. 27.
    Kisin, M.: Potentially semi-stable deformation rings. J. Am. Math. Soc. 21(2), 513–546 (2008) CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Kisin, M.: Modularity of 2-adic Barsotti-Tate representations. Invent. Math. (2009). doi:10.1007/s00222-009-0207-5 Google Scholar
  29. 29.
    Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. Math. (to appear) Google Scholar
  30. 30.
    Kisin, M.: The Fontaine-Mazur conjecture for GL 2. Preprint, available at http://www.math.uchicago.edu/~kisin
  31. 31.
    Langlands, R.: Base Change for GL2. Annals of Math. Series. Princeton University Press, Princeton (1980) MATHGoogle Scholar
  32. 32.
    Périodes p-adiques. Société Mathématique de France, Paris (1994). Papers from the seminar held in Bures-sur-Yvette, 1988, Astérisque No. 223 (1994) Google Scholar
  33. 33.
    Ribet, K.: Abelian varieties over ℚ and modular forms. In: Algebra and Topology, Taejuon, 1992, pp. 53–79. Korea Adv. Inst. Sci. Tech., Taejuon (1992) Google Scholar
  34. 34.
    Rohrlich, D., Tunnell, J.: An elementary case of Serre’s conjecture. Pac. J. Math. 299–309 (1997). Olga-Taussky-Todd Memorial issue Google Scholar
  35. 35.
    Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962) MathSciNetMATHGoogle Scholar
  36. 36.
    Saito, T.: Modular forms and p-adic Hodge theory. Preprint arXiv:math/0612077
  37. 37.
    Savitt, D.: On a Conjecture of Conrad, Diamond, and Taylor. Duke Math. J. 128(1), 141–197 (2005) CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Serre, J.-P.: Sur les représentations modulaires de degré 2 de \({\mathrm{Gal}}(\overline{\mathbf{Q}}/\mathbf{Q})\) . Duke Math. J. 54(1), 179–230 (1987) CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    Skinner, C., Wiles, A.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. 89, 5–126 (2000) Google Scholar
  40. 40.
    Skinner, C., Wiles, A.: Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. (6) 10(1), 185–215 (2001) MathSciNetMATHGoogle Scholar
  41. 41.
    Skinner, C.: Nearly ordinary deformations of residually dihedral representations (to appear) Google Scholar
  42. 42.
    Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995) CrossRefMathSciNetMATHGoogle Scholar
  43. 43.
    Taylor, R.: On icosahedral Artin representations II. Am. J. Math. 125(3), 549–566 (2003) CrossRefMATHGoogle Scholar
  44. 44.
    Tunnell, J.: Artin conjecture for representations of octahedral type. Bull. Am. Math. Soc. 5, 173–175 (1981) CrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    Wiese, G.: Dihedral Galois representations and Katz modular forms. Doc. Math. 9, 123–133 (2004) MathSciNetMATHGoogle Scholar
  46. 46.
    Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995) CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Chandrashekhar Khare
    • 1
  • Jean-Pierre Wintenberger
    • 2
  1. 1.Department of Mathematics University of UtahSalt Lake CityUSA
  2. 2.Département de MathématiqueUniversité de StrasbourgStrasbourg CedexFrance
  3. 3.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations