Advertisement

Inventiones mathematicae

, Volume 177, Issue 3, pp 571–597 | Cite as

Semitoric integrable systems on symplectic 4-manifolds

  • Alvaro Pelayo
  • San Vũ Ngọc
Open Access
Article

Abstract

Let (M,ω) be a symplectic 4-manifold. A semitoric integrable system on (M,ω) is a pair of smooth functions J,H∈C (M,ℝ) for which J generates a Hamiltonian S 1-action and the Poisson brackets {J,H} vanish. We shall introduce new global symplectic invariants for these systems; some of these invariants encode topological or geometric aspects, while others encode analytical information about the singularities and how they stand with respect to the system. Our goal is to prove that a semitoric system is completely determined by the invariants we introduce.

Keywords

Local Diffeomorphism Singular Foliation Symplectic Invariant Elliptic Singularity Equivariant Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Atiyah, M.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1–15 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benoist, Y.: Actions symplectiques de groupes compacts. Geom. Dedic. 89, 181–245 (2002). Correction to “Actions symplectiques de groupes compacts”, http://www.dma.ens.fr/~benoist zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Delzant, T.: Hamiltoniens périodiques et image convex de l’application moment. Bull. Soc. Math. France 116, 315–339 (1988) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Dufour, J.P., Molino, P.: Compactification d’actions de ℝn et variables actions-angles avec singularités. In: Dazord, P., Weinstein, A., (eds.) Séminaire Sud-Rhodanien de Géométrie à Berkeley, vol. 20, pp. 151–167. MSRI, Berkeley (1989) Google Scholar
  5. 5.
    Duistermaat, J.J.: On global action-angle variables. Commun. Pure Appl. Math. 33, 687–706 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Duistermaat, J.J., Pelayo, A.: Symplectic torus actions with coisotropic principal orbits. Ann. Inst. Fourier 57 7, 2239–2327 (2007) MathSciNetGoogle Scholar
  7. 7.
    Dullin, H., Vũ Ngọc, S.: Symplectic invariants near hyperbolic-hyperbolic points. Regul. Chaotic Dyn. 12(6), 689–716 (2007) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Eliasson, L.H.: Hamiltonian systems with Poisson commuting integrals. Ph.D. thesis, University of Stockholm (1984) Google Scholar
  9. 9.
    Eliasson, L.H.: Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case. Comment. Math. Helv. 65(1), 4–35 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Guillemin, V., Sjamaar, R.: In: Convexity Properties of Hamiltonian Group Actions. CRM Monograph Series, vol. 26. American Mathematical Society, Providence (2005). iv+82 pp Google Scholar
  11. 11.
    Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67, 491–513 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984) zbMATHGoogle Scholar
  13. 13.
    Hirsch, M.: Differential Topology, vol. 33. Springer, Berlin (1980) Google Scholar
  14. 14.
    Karshon, Y.: Periodic Hamiltonian flows on four-dimensional manifolds. Mem. Am. Math. Soc. 141(672), viii+71 (1999) MathSciNetGoogle Scholar
  15. 15.
    Kirwan, F.C.: Convexity properties of the moment mapping, III. Invent. Math. 77, 547–552 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lerman, E., Tolman, S.: Hamiltonian torus actions on symplectic orbifolds. Trans. Am. Math. Soc. 349, 4201–4230 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lerman, E., Meinrenken, E., Tolman, S., Woodward, C.: Non-abelian convexity by symplectic cuts. Topology 37, 245–259 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Marle, C.-M.: Classification des actions hamiltoniennes au voisinage d’une orbite. C. R. Acad. Sci. Paris Sér. I Math. 299, 249–252 (1984) zbMATHMathSciNetGoogle Scholar
  19. 19.
    Marle, C.-M.: Modèle d’action hamiltonienne d’un groupe de Lie sur une variété symplectique. Rend. Semin. Mat. Univ. Politec. Torino 43, 227–251 (1985) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Miranda, E., Zung, N.T.: Equivariant normal form for non-degenerate singular orbits of integrable Hamiltonian systems. Ann. Sci. Éc. Norm. Sup. (4) 37(6), 819–839 (2004) zbMATHGoogle Scholar
  21. 21.
    Ortega, J.-P., Ratiu, T.S.: A symplectic slice theorem. Lett. Math. Phys. 59, 81–93 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pelayo, A.: Symplectic actions of 2-tori on 4-manifolds. Mem. Am. Math. Soc. (to appear) 91 pp. ArXiv:Math.SG/0609848
  23. 23.
    Sadovskií, D.A., Zhilinskií, B.I.: Monodromy, diabolic points, and angular momentum coupling. Phys. Lett. A 256(4), 235–244 (1999) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sjamaar, R.: Convexity properties of the moment mapping re-examined. Adv. Math. 138(1), 46–91 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Vũ Ngọc, S.: On semi-global invariants for focus-focus singularities. Topology 42(2), 365–380 (2003) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Vũ Ngọc, S.: Moment polytopes for symplectic manifolds with monodromy. Adv. Math. 208(2), 909–934 (2007) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Zung, N.T.: Symplectic topology of integrable Hamiltonian systems. I. Arnold-Liouville with singularities. Compos. Math. 101(2), 179–215 (1996) zbMATHGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of California–BerkeleyBerkeleyUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Institut de Recherches Mathématiques de RennesUniversité de Rennes 1Rennes cedexFrance

Personalised recommendations