Inventiones mathematicae

, 175:417 | Cite as

L 2-rigidity in von Neumann algebras



We introduce the notion of L 2-rigidity for von Neumann algebras, a generalization of property (T) which can be viewed as an analogue for the vanishing of 1-cohomology into the left regular representation of a group. We show that L 2-rigidity passes to normalizers and is satisfied by nonamenable II1 factors which are non-prime, have property Γ, or are weakly rigid. As a consequence we obtain that if M is a free product of diffuse von Neumann algebras, or if M=LΓ where Γ is a finitely generated group with β1 (2)(Γ)>0, then any nonamenable regular subfactor of M is prime and does not have properties Γ or (T). In particular this gives a new approach for showing solidity for a free group factor thus recovering a well known recent result of N. Ozawa.


  1. 1.
    Bekka, M.E.B., Valette, A.: Group cohomology, harmonic functions and the first L 2-Betti number. Potential Anal. 6, 313–326 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cipriani, F., Sauvageot, J.-L.: Derivations as square roots of Dirichlet forms. J. Funct. Anal. 201, 78–120 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Connes, A.: Classification of injective factors. Ann. Math. 104, 73–115 (1976)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Connes, A.: A type II1 factor with countable fundamental group. J. Oper. Theory 4, 151–153 (1980)MATHMathSciNetGoogle Scholar
  5. 5.
    Connes, A.: Classification des facteurs. Proc. Symp. Pure Math. 38, 43–109 (1982)MathSciNetGoogle Scholar
  6. 6.
    Connes, A., Jones, V.F.R.: Property (T) for von Neumann algebras. Bull. Lond. Math. Soc. 17, 57–62 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Connes, A., Shlyakhtenko, D.: L 2-homology for von Neumann algebras. J. Reine Angew. Math. 586, 125–168 (2005)MATHMathSciNetGoogle Scholar
  8. 8.
    Davies, E.B., Lindsay, J.M.: Non-commutative symmetric Markov semigroups. Math. Z. 210, 379–411 (1992)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ge, L.: Applications of free entropy to finite von Neumann algebras. II. Ann. Math. (2) 147(1), 143–157 (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Haagerup, U.: An example of a nonnuclear C *-algebra, which has the metric approximation property. Invent. Math. 50, 279–293 (1979)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Haagerup, U.: Injectivity and Decomposition of Completely Bounded Maps. Lect. Notes Math., vol. 1132, pp. 170–222. Springer, Berlin (1985)Google Scholar
  12. 12.
    Ioana, A., Peterson, J., Popa, S.: Amalgamated free products of w-rigid factors and calculation of their symmetry groups. Acta Math. 200(1), 85–153 (2008)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jung, K.: Strongly 1-bounded von Neumann algebras. Geom. Funct. Anal. 17(4), 1180–1200 (2007)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext. Springer, Berlin (1992)MATHGoogle Scholar
  15. 15.
    Martin, F., Valette, A.: On the first L p-cohomology of discrete groups. Groups Geom. Dyn. 1(1), 81–100 (2007)MATHMathSciNetGoogle Scholar
  16. 16.
    Murray, F.J., von Neumann, J.: On rings of operators IV. Ann. Math. (2) 44, 716–808 (1943)CrossRefGoogle Scholar
  17. 17.
    Ozawa, N.: Solid von Neumann algebras. Acta Math. 192(1), 111–117 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ozawa, N.: A Kurosh type theorem for type II1 factors. Int. Math. Res. Not., Art. ID 97560, 21 pp. (2006)Google Scholar
  19. 19.
    Ozawa, N., Popa, S.: Some prime factorization results for II1 factors. Invent. Math. 156, 223–234 (2004)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Peterson, J.: A 1-cohomology characterization of property (T) in von Neumann algebras. Preprint (2004). math.OA/0409527Google Scholar
  21. 21.
    Popa, S.: Orthogonal pairs of *-subalgebras in finite von Neumann algebras. J. Oper. Theory 9(2), 253–268 (1983)MATHGoogle Scholar
  22. 22.
    Popa, S.: Correspondences. INCREST Preprint (1986). unpublishedGoogle Scholar
  23. 23.
    Popa, S.: Some rigidity results for non-commutative Bernoulli shifts. J. Funct. Anal. 230(2), 273–328 (2006)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Popa, S.: On a class of type II1 factors with Betti numbers invariants. Ann. Math. (2) 163(3), 809–899 (2006)MATHCrossRefGoogle Scholar
  25. 25.
    Popa, S.: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups I, II. Invent. Math. 165(2), 369–408, 409–451 (2006)Google Scholar
  26. 26.
    Popa, S.: On Ozawa’s property for free group factors. Int. Math. Res. Not., 11, Art. ID rnm036, 10 pp. (2007)Google Scholar
  27. 27.
    Sauvageot, J.-L.: Tangent bimodules and locality for dissipative operators on C *-algebras. In: Quantum Probability and Applications, IV. Lect. Notes Math., vol. 1396, pp. 322–338. Springer, Berlin (1989)CrossRefGoogle Scholar
  28. 28.
    Sauvageot, J.-L.: Quantum Dirichlet forms, differential calculus and semigroups. In: Quantum Probability and Applications, V. Lect. Notes Math., vol. 1442, pp. 334–346. Springer, Berlin (1990)CrossRefGoogle Scholar
  29. 29.
    Sauvageot, J.-L.: Strong Feller semigroups on C *-algebras. J. Oper. Theory 42, 83–102 (1999)MATHMathSciNetGoogle Scholar
  30. 30.
    Thom, A.: L 2-cohomology for von Neumann algebras. Geom. Funct. Anal. 18, 251–270 (2008)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Voiculescu, D.: The analogues of entropy and of Fisher’s information measure in free probability theory, V. Invent. Math. 132, 189–227 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations