Advertisement

Inventiones mathematicae

, 175:1 | Cite as

The Gersten conjecture for Milnor K-theory

  • Moritz Kerz
Article

Abstract

We prove that the n-th Milnor K-group of an essentially smooth local ring over an infinite field coincides with the (n,n)-motivic cohomology of the ring. This implies Levine’s generalized Bloch–Kato conjecture.

Keywords

Exact Sequence Local Ring Short Exact Sequence Chow Group Semilocal Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Artin, M., Grothendieck, A., Verdier, J.L.: SGA 4/2: Théorie des topos et cohomologie étale des schémas. Tome 2. Lect. Notes Math., vol. 270. (Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat)Google Scholar
  2. 2.
    Baeza, R.: Quadratic Forms over Semilocal Rings. Lect. Notes Math., vol. 655Google Scholar
  3. 3.
    Bass, H., Tate, J.: The Milnor ring of a global field. In: Algebraic K-theory, II. (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972). Lect. Notes Math., vol. 342, pp. 349–446Google Scholar
  4. 4.
    Beilinson, A.: Letter to Soulé. K-theory Preprint Archives, 694. (1982)Google Scholar
  5. 5.
    Colliot-Thélène, J.-L., Hoobler, R., Kahn, B.: The Bloch–Ogus–Gabber theorem. In: Algebraic K-theory (Toronto, ON, 1996). Fields Inst. Commun., vol. 16, pp. 31–94Google Scholar
  6. 6.
    Elbaz-Vincent, P., Müller-Stach, S.: Milnor K-theory of rings, higher Chow groups and applications. Invent. Math. 148(1), 177–206 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gabber, O.: Letter to Bruno Kahn (1998)Google Scholar
  8. 8.
    Gabber, O.: Affine analog of the proper base change theorem. Isr. J. Math. 87, 325–335 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J., II. Ser. 9, 119–221 (1957)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Hoobler, R.: The Merkuriev–Suslin Theorem for any Semi-Local Ring. K-theory Preprint Archives, 731Google Scholar
  11. 11.
    Kahn, B.: Some conjectures on the algebraic K-theory of fields. In: Algebraic K-Theory: Connections with Geometry and Topology (Lake Louise, AB, 1987), pp. 117–176Google Scholar
  12. 12.
    Kahn, B.: Deux théorèmes de comparaison en cohomologie étale. Duke Math. J. 69, 137–165 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kato, K.: A generalization of local class field theory by using K-groups. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(3), 603–683 (1980)zbMATHGoogle Scholar
  14. 14.
    Kato, K.: Milnor K-theory and the Chow group of zero cycles. In: Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory (Boulder, Colo., 1983). Contemp. Math., vol. 55, pp. 241–253Google Scholar
  15. 15.
    Kerz, M.: Der Gerstenkomplex der Milnor K-Theorie. Diploma thesis, Universität Mainz (2005) http://www-nw.uni-regensburg.de/∼.kem12713.mathematik.uni-regensburg.de/dipl.pdfGoogle Scholar
  16. 16.
    Kerz, M., Müller-Stach, S.: The Milnor–Chow homomorphism revisited. K-Theory 38(1), 49–58 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Levine, M.: Relative Milnor K-theory. K-Theory 6(2), 113–175 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lichtenbaum, S.: Motivic complexes. In: Motives (Seattle, WA, 1991), pp. 303–313Google Scholar
  19. 19.
    Milnor, J.: Algebraic K-theory and quadratic forms. Invent. Math. 9, 318–344 (1969/1970)Google Scholar
  20. 20.
    Nesterenko, Y., Suslin, A.: Homology of the general linear group over a local ring, and Milnor’s K-theory. Math. USSR Izv. 34(1), 121–145 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Orlov, D., Vishik, A., Voevodsky, V.: An exact sequence for K M */2 with applications to quadratic forms. Ann. Math. (2) 165(1), 1–13 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Panin, I.A.: The equicharacteristic case of the Gersten conjecture. Proc. Steklov Inst. Math. 241(2), 154–163 (2003)MathSciNetGoogle Scholar
  23. 23.
    Quillen, D.: Higher algebraic K-theory. I. In: Algebraic K-Theory (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Lect. Notes Math., vol. 341, pp. 85–147Google Scholar
  24. 24.
    Rost, M.: Chow groups with coefficients. Doc. Math. 1(16), 319–393 (1996)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Soulé, C.: Opérations en K-théorie algébrique. Can. J. Math. 37(3), 488–550 (1985)zbMATHGoogle Scholar
  26. 26.
    Suslin, A., Voevodsky, V.: Bloch–Kato Conjecture and Motivic Cohomology with Finite Coefficients. K-Theory Preprint Archives, 341Google Scholar
  27. 27.
    Suslin, A., Yarosh, V.: Milnor’s K 3 of a discrete valuation ring. In: Algebraic K-theory. Adv. Sov. Math., vol. 4, pp. 155–170Google Scholar
  28. 28.
    Swan, R.: Néron–Popescu desingularization. In: Algebra and Geometry (Taipei, 1995). Lect. Algebra Geom., vol. 2, pp. 135–192Google Scholar
  29. 29.
    Totaro, B.: Milnor K-theory is the simplest part of algebraic K-theory. K-Theory 6(2), 177–189 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Voevodsky, V.: Cohomological theory of presheaves with transfers. In: Cycles, Transfers, and Motivic Homology Theories. Ann. Math. Stud., vol. 143, pp. 87–137Google Scholar
  31. 31.
    Voevodsky, V.: Triangulated categories of motives over a field. In: Cycles, Transfers, and Motivic Homology Theories. Ann. Math. Stud., vol. 143, pp. 188–238Google Scholar
  32. 32.
    Voevodsky, V.: Motivic cohomology with ℤ/2-coefficients. Publ. Math., Inst. Hautes Étud. Sci. 98, 59–104 (2003)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Voevodsky, V.: On motivic cohomology with ℤ/l-coefficients. In: K-Theory Preprint Archives, p. 639Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.NWF I-MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations