Inventiones mathematicae

, 175:1 | Cite as

The Gersten conjecture for Milnor K-theory



We prove that the n-th Milnor K-group of an essentially smooth local ring over an infinite field coincides with the (n,n)-motivic cohomology of the ring. This implies Levine’s generalized Bloch–Kato conjecture.


Exact Sequence Local Ring Short Exact Sequence Chow Group Semilocal Ring 


  1. 1.
    Artin, M., Grothendieck, A., Verdier, J.L.: SGA 4/2: Théorie des topos et cohomologie étale des schémas. Tome 2. Lect. Notes Math., vol. 270. (Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat)Google Scholar
  2. 2.
    Baeza, R.: Quadratic Forms over Semilocal Rings. Lect. Notes Math., vol. 655Google Scholar
  3. 3.
    Bass, H., Tate, J.: The Milnor ring of a global field. In: Algebraic K-theory, II. (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972). Lect. Notes Math., vol. 342, pp. 349–446Google Scholar
  4. 4.
    Beilinson, A.: Letter to Soulé. K-theory Preprint Archives, 694. (1982)Google Scholar
  5. 5.
    Colliot-Thélène, J.-L., Hoobler, R., Kahn, B.: The Bloch–Ogus–Gabber theorem. In: Algebraic K-theory (Toronto, ON, 1996). Fields Inst. Commun., vol. 16, pp. 31–94Google Scholar
  6. 6.
    Elbaz-Vincent, P., Müller-Stach, S.: Milnor K-theory of rings, higher Chow groups and applications. Invent. Math. 148(1), 177–206 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gabber, O.: Letter to Bruno Kahn (1998)Google Scholar
  8. 8.
    Gabber, O.: Affine analog of the proper base change theorem. Isr. J. Math. 87, 325–335 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J., II. Ser. 9, 119–221 (1957)MATHMathSciNetGoogle Scholar
  10. 10.
    Hoobler, R.: The Merkuriev–Suslin Theorem for any Semi-Local Ring. K-theory Preprint Archives, 731Google Scholar
  11. 11.
    Kahn, B.: Some conjectures on the algebraic K-theory of fields. In: Algebraic K-Theory: Connections with Geometry and Topology (Lake Louise, AB, 1987), pp. 117–176Google Scholar
  12. 12.
    Kahn, B.: Deux théorèmes de comparaison en cohomologie étale. Duke Math. J. 69, 137–165 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kato, K.: A generalization of local class field theory by using K-groups. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(3), 603–683 (1980)MATHGoogle Scholar
  14. 14.
    Kato, K.: Milnor K-theory and the Chow group of zero cycles. In: Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory (Boulder, Colo., 1983). Contemp. Math., vol. 55, pp. 241–253Google Scholar
  15. 15.
    Kerz, M.: Der Gerstenkomplex der Milnor K-Theorie. Diploma thesis, Universität Mainz (2005)∼ Scholar
  16. 16.
    Kerz, M., Müller-Stach, S.: The Milnor–Chow homomorphism revisited. K-Theory 38(1), 49–58 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Levine, M.: Relative Milnor K-theory. K-Theory 6(2), 113–175 (1992)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lichtenbaum, S.: Motivic complexes. In: Motives (Seattle, WA, 1991), pp. 303–313Google Scholar
  19. 19.
    Milnor, J.: Algebraic K-theory and quadratic forms. Invent. Math. 9, 318–344 (1969/1970)Google Scholar
  20. 20.
    Nesterenko, Y., Suslin, A.: Homology of the general linear group over a local ring, and Milnor’s K-theory. Math. USSR Izv. 34(1), 121–145 (1990)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Orlov, D., Vishik, A., Voevodsky, V.: An exact sequence for K M */2 with applications to quadratic forms. Ann. Math. (2) 165(1), 1–13 (2007)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Panin, I.A.: The equicharacteristic case of the Gersten conjecture. Proc. Steklov Inst. Math. 241(2), 154–163 (2003)MathSciNetGoogle Scholar
  23. 23.
    Quillen, D.: Higher algebraic K-theory. I. In: Algebraic K-Theory (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Lect. Notes Math., vol. 341, pp. 85–147Google Scholar
  24. 24.
    Rost, M.: Chow groups with coefficients. Doc. Math. 1(16), 319–393 (1996)MATHMathSciNetGoogle Scholar
  25. 25.
    Soulé, C.: Opérations en K-théorie algébrique. Can. J. Math. 37(3), 488–550 (1985)MATHGoogle Scholar
  26. 26.
    Suslin, A., Voevodsky, V.: Bloch–Kato Conjecture and Motivic Cohomology with Finite Coefficients. K-Theory Preprint Archives, 341Google Scholar
  27. 27.
    Suslin, A., Yarosh, V.: Milnor’s K 3 of a discrete valuation ring. In: Algebraic K-theory. Adv. Sov. Math., vol. 4, pp. 155–170Google Scholar
  28. 28.
    Swan, R.: Néron–Popescu desingularization. In: Algebra and Geometry (Taipei, 1995). Lect. Algebra Geom., vol. 2, pp. 135–192Google Scholar
  29. 29.
    Totaro, B.: Milnor K-theory is the simplest part of algebraic K-theory. K-Theory 6(2), 177–189 (1992)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Voevodsky, V.: Cohomological theory of presheaves with transfers. In: Cycles, Transfers, and Motivic Homology Theories. Ann. Math. Stud., vol. 143, pp. 87–137Google Scholar
  31. 31.
    Voevodsky, V.: Triangulated categories of motives over a field. In: Cycles, Transfers, and Motivic Homology Theories. Ann. Math. Stud., vol. 143, pp. 188–238Google Scholar
  32. 32.
    Voevodsky, V.: Motivic cohomology with ℤ/2-coefficients. Publ. Math., Inst. Hautes Étud. Sci. 98, 59–104 (2003)MATHMathSciNetGoogle Scholar
  33. 33.
    Voevodsky, V.: On motivic cohomology with ℤ/l-coefficients. In: K-Theory Preprint Archives, p. 639Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.NWF I-MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations