Inventiones mathematicae

, Volume 173, Issue 1, pp 209–223 | Cite as

Exotic smooth structures on small 4-manifolds

Article

Abstract

Let M be either \(\mathbb{CP}^{2}\#3\overline{\mathbb{CP}}^{2}\) or \(3\mathbb{CP}^{2}\#5\overline{\mathbb{CP}}^{2}\). We construct the first example of a simply-connected irreducible symplectic 4-manifold that is homeomorphic but not diffeomorphic to M.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhmedov, A.: Construction of new symplectic cohomology S 2×S 2. arXiv:math/0611128Google Scholar
  2. 2.
    Akhmedov, A.: Small exotic 4-manifolds. arXiv:math/0612130Google Scholar
  3. 3.
    Akhmedov, A., Baykur, R.İ., Park, B.D.: Constructing infinitely many smooth structures on small 4-manifolds. J. Topology (to appear)Google Scholar
  4. 4.
    Baldridge, S., Kirk, P.: A symplectic manifold homeomorphic but not diffeomorphic to \(\mathbb{CP}^{2}\# 3\overline{\mathbb{CP}}^{2}\). arXiv:math/0702211Google Scholar
  5. 5.
    Barlow, R.: A simply connected surface of general type with p g=0. Invent. Math. 79, 293–301 (1985)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Burde, G., Zieschang, H.: Knots, 2nd edn. De Gruyter Stud. Math., vol. 5. Walter de Gruyter, Berlin (2003)MATHGoogle Scholar
  7. 7.
    Donaldson, S.K.: Irrationality and the h-cobordism conjecture. J. Differ. Geom. 26, 141–168 (1987)MathSciNetMATHGoogle Scholar
  8. 8.
    Fintushel, R., Park, B.D., Stern, R.J.: Reverse engineering small 4-manifolds. Algebr. Geom. Topol. 7, 2103–2116 (2007)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Fintushel, R., Stern, R.J.: Rational blowdowns of smooth 4-manifolds. J. Differ. Geom. 46, 181–235 (1997)MathSciNetMATHGoogle Scholar
  10. 10.
    Fintushel, R., Stern, R.J.: Knots, links and 4-manifolds. Invent. Math. 134, 363–400 (1998)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Fintushel, R., Stern, R.J.: Double node neighborhoods and families of simply connected 4-manifolds with b +=1. J. Am. Math. Soc. 19, 171–180 (2006)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17, 357–453 (1982)MATHGoogle Scholar
  13. 13.
    Friedman, R., Morgan, J.W.: On the diffeomorphism types of certain algebraic surfaces I. J. Differ. Geom. 27, 297–369 (1988)MathSciNetMATHGoogle Scholar
  14. 14.
    Friedman, R., Morgan, J.W.: Complex versus differentiable classification of algebraic surfaces. Topology Appl. 32, 135–139 (1989)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Friedman, R., Morgan, J.W.: Smooth Four-Manifolds and Complex Surfaces. Ergeb. Math. Grenzgeb., 3. Folge, vol. 27. Springer, Berlin (1994)MATHGoogle Scholar
  16. 16.
    The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.3. http://www.gap-system.org. 2002Google Scholar
  17. 17.
    Gompf, R.E.: A new construction of symplectic manifolds. Ann. Math. 142, 527–595 (1995)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus. Grad. Stud. Math., vol. 20. Am. Math. Soc., Providence, RI (1999)Google Scholar
  19. 19.
    Hamilton, M.J.D., Kotschick, D.: Minimality and irreducibility of symplectic four-manifolds. Int. Math. Res. Not. 2006, Art. ID 35032, 13 pp.Google Scholar
  20. 20.
    Kotschick, D.: On manifolds homeomorphic to \(\mathbb{CP}^2\#8\overline{\mathbb{CP}}^2\). Invent. Math. 95, 591–600 (1989)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Kotschick, D.: The Seiberg–Witten invariants of symplectic four-manifolds (after C.H. Taubes). Séminaire Bourbaki, 1995/96, no. 812. Astérisque 241, 195–220 (1997)Google Scholar
  22. 22.
    Li, T.-J.: Smoothly embedded spheres in symplectic 4-manifolds. Proc. Am. Math. Soc. 127, 609–613 (1999)CrossRefMATHGoogle Scholar
  23. 23.
    Park, B.D.: Exotic smooth structures on \(3{\mathbb{CP}}^2 \# n\overline{\mathbb{CP}}^2\). Proc. Am. Math. Soc. 128, 3057–3065 (2000)CrossRefMATHGoogle Scholar
  24. 24.
    Park, B.D.: Exotic smooth structures on \(3{\mathbb{CP}}^2 \# n\overline{\mathbb{CP}}^2\), Part II. Proc. Am. Math. Soc. 128, 3067–3073 (2000)CrossRefMATHGoogle Scholar
  25. 25.
    Park, B.D.: Constructing infinitely many smooth structures on \(3{\mathbb{CP}}^2 \# n\overline{\mathbb{CP}}^2\). Math. Ann. 322, 267–278 (2002)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Park, B.D.: Erratum to “Constructing infinitely many smooth structures on \(3{\mathbb{CP}}^2 \# n\overline{\mathbb{CP}}^2\)”. Math. Ann. 340, 731–732 (2008)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Park, J.: Seiberg–Witten invariants of generalised rational blow-downs. Bull. Aust. Math. Soc. 56, 363–384 (1997)MATHCrossRefGoogle Scholar
  28. 28.
    Park, J.: Simply connected symplectic 4-manifolds with b + 2=1 and c 2 1=2. Invent. Math. 159, 657–667 (2005)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Park, J.: Exotic smooth structures on \(3{\mathbb{CP}}^2\# 8\overline{\mathbb{CP}}^2\). Bull. Lond. Math. Soc. 39, 95–102 (2007)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Park, J., Stipsicz, A.I., Szabó, Z.: Exotic smooth structures on \(\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2\). Math. Res. Lett. 12, 701–712 (2005)MathSciNetMATHGoogle Scholar
  31. 31.
    Stipsicz, A.I.: Donaldson invariants of certain symplectic manifolds. J. Reine Angew. Math. 465, 1–10 (1995)MathSciNetMATHGoogle Scholar
  32. 32.
    Stipsicz, A.I.: Donaldson series and (-1)-tori. J. Reine Angew. Math. 465, 133–144 (1995)MathSciNetMATHGoogle Scholar
  33. 33.
    Stipsicz, A.I., Szabó, Z.: An exotic smooth structure on \(\mathbb{CP}^2\#6\overline{\mathbb{CP}}^2\). Geom. Topol. 9, 813–832 (2005)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Stipsicz, A.I., Szabó, Z.: Small exotic 4-manifolds with b 2 +=3. Bull. Lond. Math. Soc. 38, 501–506 (2006)CrossRefMATHGoogle Scholar
  35. 35.
    Szabó, Z.: Irreducible four-manifolds with small Euler characteristics. Topology 35, 411–426 (1996)CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    Szabó, Z.: Exotic 4-manifolds with b 2 +=1. Math. Res. Lett. 3, 731–741 (1996)MathSciNetMATHGoogle Scholar
  37. 37.
    Taubes, C.H.: The Seiberg–Witten invariants and symplectic forms. Math. Res. Lett. 1, 809–822 (1994)MathSciNetMATHGoogle Scholar
  38. 38.
    Thurston, W.P.: Some simple examples of symplectic manifolds. Proc. Am. Math. Soc. 55, 467–468 (1976)CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    Usher, M.: Minimality and symplectic sums. Int. Math. Res. Not. 2006, Art. ID 49857, 17 pp.Google Scholar
  40. 40.
    Witten, E.: Monopoles and four-manifolds. Math. Res. Lett. 1, 769–796 (1994)MathSciNetMATHGoogle Scholar
  41. 41.
    Yu, B.Z.: Some computations of Donaldson’s polynomials via flat connections. Ph.D. Thesis, U.C. Berkeley (1994)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Pure MathematicsUniversity of Waterloo WaterlooCanada

Personalised recommendations