Advertisement

Inventiones mathematicae

, Volume 173, Issue 1, pp 209–223 | Cite as

Exotic smooth structures on small 4-manifolds

  • Anar Akhmedov
  • B. Doug Park
Article

Abstract

Let M be either \(\mathbb{CP}^{2}\#3\overline{\mathbb{CP}}^{2}\) or \(3\mathbb{CP}^{2}\#5\overline{\mathbb{CP}}^{2}\). We construct the first example of a simply-connected irreducible symplectic 4-manifold that is homeomorphic but not diffeomorphic to M.

Keywords

Fundamental Group Tubular Neighborhood Smooth Structure Puncture Torus Symplectic Submanifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhmedov, A.: Construction of new symplectic cohomology S 2×S 2. arXiv:math/0611128Google Scholar
  2. 2.
    Akhmedov, A.: Small exotic 4-manifolds. arXiv:math/0612130Google Scholar
  3. 3.
    Akhmedov, A., Baykur, R.İ., Park, B.D.: Constructing infinitely many smooth structures on small 4-manifolds. J. Topology (to appear)Google Scholar
  4. 4.
    Baldridge, S., Kirk, P.: A symplectic manifold homeomorphic but not diffeomorphic to \(\mathbb{CP}^{2}\# 3\overline{\mathbb{CP}}^{2}\). arXiv:math/0702211Google Scholar
  5. 5.
    Barlow, R.: A simply connected surface of general type with p g=0. Invent. Math. 79, 293–301 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Burde, G., Zieschang, H.: Knots, 2nd edn. De Gruyter Stud. Math., vol. 5. Walter de Gruyter, Berlin (2003)zbMATHGoogle Scholar
  7. 7.
    Donaldson, S.K.: Irrationality and the h-cobordism conjecture. J. Differ. Geom. 26, 141–168 (1987)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fintushel, R., Park, B.D., Stern, R.J.: Reverse engineering small 4-manifolds. Algebr. Geom. Topol. 7, 2103–2116 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Fintushel, R., Stern, R.J.: Rational blowdowns of smooth 4-manifolds. J. Differ. Geom. 46, 181–235 (1997)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fintushel, R., Stern, R.J.: Knots, links and 4-manifolds. Invent. Math. 134, 363–400 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Fintushel, R., Stern, R.J.: Double node neighborhoods and families of simply connected 4-manifolds with b +=1. J. Am. Math. Soc. 19, 171–180 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17, 357–453 (1982)zbMATHGoogle Scholar
  13. 13.
    Friedman, R., Morgan, J.W.: On the diffeomorphism types of certain algebraic surfaces I. J. Differ. Geom. 27, 297–369 (1988)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Friedman, R., Morgan, J.W.: Complex versus differentiable classification of algebraic surfaces. Topology Appl. 32, 135–139 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Friedman, R., Morgan, J.W.: Smooth Four-Manifolds and Complex Surfaces. Ergeb. Math. Grenzgeb., 3. Folge, vol. 27. Springer, Berlin (1994)zbMATHGoogle Scholar
  16. 16.
    The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.3. http://www.gap-system.org. 2002Google Scholar
  17. 17.
    Gompf, R.E.: A new construction of symplectic manifolds. Ann. Math. 142, 527–595 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus. Grad. Stud. Math., vol. 20. Am. Math. Soc., Providence, RI (1999)Google Scholar
  19. 19.
    Hamilton, M.J.D., Kotschick, D.: Minimality and irreducibility of symplectic four-manifolds. Int. Math. Res. Not. 2006, Art. ID 35032, 13 pp.Google Scholar
  20. 20.
    Kotschick, D.: On manifolds homeomorphic to \(\mathbb{CP}^2\#8\overline{\mathbb{CP}}^2\). Invent. Math. 95, 591–600 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Kotschick, D.: The Seiberg–Witten invariants of symplectic four-manifolds (after C.H. Taubes). Séminaire Bourbaki, 1995/96, no. 812. Astérisque 241, 195–220 (1997)Google Scholar
  22. 22.
    Li, T.-J.: Smoothly embedded spheres in symplectic 4-manifolds. Proc. Am. Math. Soc. 127, 609–613 (1999)CrossRefzbMATHGoogle Scholar
  23. 23.
    Park, B.D.: Exotic smooth structures on \(3{\mathbb{CP}}^2 \# n\overline{\mathbb{CP}}^2\). Proc. Am. Math. Soc. 128, 3057–3065 (2000)CrossRefzbMATHGoogle Scholar
  24. 24.
    Park, B.D.: Exotic smooth structures on \(3{\mathbb{CP}}^2 \# n\overline{\mathbb{CP}}^2\), Part II. Proc. Am. Math. Soc. 128, 3067–3073 (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    Park, B.D.: Constructing infinitely many smooth structures on \(3{\mathbb{CP}}^2 \# n\overline{\mathbb{CP}}^2\). Math. Ann. 322, 267–278 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Park, B.D.: Erratum to “Constructing infinitely many smooth structures on \(3{\mathbb{CP}}^2 \# n\overline{\mathbb{CP}}^2\)”. Math. Ann. 340, 731–732 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Park, J.: Seiberg–Witten invariants of generalised rational blow-downs. Bull. Aust. Math. Soc. 56, 363–384 (1997)zbMATHCrossRefGoogle Scholar
  28. 28.
    Park, J.: Simply connected symplectic 4-manifolds with b + 2=1 and c 2 1=2. Invent. Math. 159, 657–667 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Park, J.: Exotic smooth structures on \(3{\mathbb{CP}}^2\# 8\overline{\mathbb{CP}}^2\). Bull. Lond. Math. Soc. 39, 95–102 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Park, J., Stipsicz, A.I., Szabó, Z.: Exotic smooth structures on \(\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2\). Math. Res. Lett. 12, 701–712 (2005)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Stipsicz, A.I.: Donaldson invariants of certain symplectic manifolds. J. Reine Angew. Math. 465, 1–10 (1995)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Stipsicz, A.I.: Donaldson series and (-1)-tori. J. Reine Angew. Math. 465, 133–144 (1995)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Stipsicz, A.I., Szabó, Z.: An exotic smooth structure on \(\mathbb{CP}^2\#6\overline{\mathbb{CP}}^2\). Geom. Topol. 9, 813–832 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Stipsicz, A.I., Szabó, Z.: Small exotic 4-manifolds with b 2 +=3. Bull. Lond. Math. Soc. 38, 501–506 (2006)CrossRefzbMATHGoogle Scholar
  35. 35.
    Szabó, Z.: Irreducible four-manifolds with small Euler characteristics. Topology 35, 411–426 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Szabó, Z.: Exotic 4-manifolds with b 2 +=1. Math. Res. Lett. 3, 731–741 (1996)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Taubes, C.H.: The Seiberg–Witten invariants and symplectic forms. Math. Res. Lett. 1, 809–822 (1994)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Thurston, W.P.: Some simple examples of symplectic manifolds. Proc. Am. Math. Soc. 55, 467–468 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Usher, M.: Minimality and symplectic sums. Int. Math. Res. Not. 2006, Art. ID 49857, 17 pp.Google Scholar
  40. 40.
    Witten, E.: Monopoles and four-manifolds. Math. Res. Lett. 1, 769–796 (1994)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Yu, B.Z.: Some computations of Donaldson’s polynomials via flat connections. Ph.D. Thesis, U.C. Berkeley (1994)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Pure MathematicsUniversity of Waterloo WaterlooCanada

Personalised recommendations