Inventiones mathematicae

, Volume 171, Issue 3, pp 617–628

Displays and formal p-divisible groups

Article

Abstract

Over p-adic Nagata rings, formal p-divisible groups are classified by nilpotent displays according to T. Zink. We extend this result to arbitrary p-adic rings. The proof uses the Grothendieck–Illusie deformation theory of truncated p-divisible groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbaki, N.: Algèbre commutative. Chaps. 8, 9. Masson, Paris (1983)Google Scholar
  2. 2.
    Illusie, L.: Deformations de groupes de Barsotti-Tate (d’après A. Grothendieck). In: Seminar on Arithmetic Bundles: The Mordell Conjecture. Astérisque, vol. 127, pp. 151–198. Société Mathématique de France, Paris (1985)Google Scholar
  3. 3.
    Laumon, G., Moret-Bailly, L.: Champs algèbriques. Springer, Berlin (2000)MATHGoogle Scholar
  4. 4.
    Messing, W.: Travaux de Zink. In: Séminaire Bourbaki, vol. 2005/2006. Astérisque, no. 311, exposé no. 964, pp. 341–364. Société Mathématique de France, Paris (2007)Google Scholar
  5. 5.
    Wedhorn, T.: The dimension of Oort strata of Shimura varieties of PEL-type. In: Moduli of Abelian Varieties, Progr. Math., vol. 195, pp. 441–471. Birkhäuser, Basel (2001)Google Scholar
  6. 6.
    Zink, T.: The display of a formal p-divisible group. In: Cohomologies p-adiques et applications arithmétiques, I. Astérisque, vol. 278, pp. 127–248. Société Mathématique de France, Paris (2002)Google Scholar
  7. 7.
    Zink, T.: Lectures on p-divisible groups and displays at Université de Paris XIII (2006)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations