Inventiones mathematicae

, Volume 171, Issue 2, pp 281–300 | Cite as

Tight geodesics in the curve complex

  • Brian H. Bowditch


The curve graph, \(\mathcal{G}\), associated to a compact surface Σ is the 1-skeleton of the curve complex defined by Harvey. Masur and Minsky showed that this graph is hyperbolic and defined the notion of a tight geodesic therein. We prove some finiteness results for such geodesics. For example, we show that a slice of the union of tight geodesics between any pair of points has cardinality bounded purely in terms of the topological type of Σ. We deduce some consequences for the action of the mapping class group on \(\mathcal{G}\). In particular, we show that it satisfies an acylindricity condition, and that the stable lengths of pseudoanosov elements are rational with bounded denominator.


Boundary Component Mapping Class Group Closed Geodesic Hyperbolic Group Band System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, G., Fujiwara, K.: The asymptotic dimension of a curve graph is finite. To appear in J. Lond. Math. Soc.Google Scholar
  2. 2.
    Bestvina, M., Fujiwara, K.: Bounded cohomology of subgroups of the mapping class groups. Geom. Topol. 6, 69–89 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bowditch, B.H.: Relatively hyperbolic groups. Preprint, Southampton (1999)Google Scholar
  4. 4.
    Bowditch, B.H.: Intersection numbers and the hyperbolicity of the curve complex. J. Reine Angew. Math. 598, 105–129 (2006)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bowditch, B.H.: Systems of bands in hyperbolic 3-manifolds. To appear in Pac. J. Math.Google Scholar
  6. 6.
    Bowditch, B.H.: Length bounds on curves arising from tight geodesics. To appear in Geom. Funct. Anal.Google Scholar
  7. 7.
    Canary, R.D., Epstein, D.B.A., Green, P.: Notes on notes of Thurston. In: Epstein, D.B.A., ed., Analytic and Geometric Aspects of Hyperbolic Space. Lond. Math. Soc. Lect. Notes Ser., vol. 111, pp. 3–92. Cambridge University Press, Cambridge (1987)Google Scholar
  8. 8.
    Delzant, T.: Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math. J. 83, 661–682 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ghys, E., de la Harpe, P. (eds.): Sur les groupes hyperboliques d’après Mikhael Gromov. Prog. Math., vol. 83. Birkhäuser, Boston (1990)Google Scholar
  10. 10.
    Gromov, M.: Hyperbolic groups. In: Gersten, S.M., ed., Essays in Group Theory. Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–263. Springer, New York (1988)Google Scholar
  11. 11.
    Gromov, M., LaFontaine, J., Pansu, P. (eds.): Metric structures for Reimannian and non-Riemannian spaces. Prog. Math., vol. 152. Birkhäuser, Boston (1998)Google Scholar
  12. 12.
    Harer, J.L.: The virtual cohomological dimension of the mapping class groups of orientable surfaces. Invent. Math. 84, 157–176 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Harvey, W.J.: Boundary structure of the modular group. In: Kra, I., Maskit, B. (eds.), Riemann Surfaces and Related Topics. Proceedings of the 1978 Stony Brook Conference. Ann. Math. Stud., vol. 97, pp. 245–251. Princeton University Press, Princeton (1981)Google Scholar
  14. 14.
    Ivanov, N.V.: Automorphism of complexes of curves and of Teichmüller spaces. Int. Math. Res. Not. 14, 651–666 (1997)CrossRefGoogle Scholar
  15. 15.
    Kida, Y.: The mapping class group from the viewpoint of measure equivalence theory. To appear in Mem. Am. Math. Soc.Google Scholar
  16. 16.
    Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves I: hyperbolicity. Invent. Math. 138, 103–149 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves II: hierarchical structure. Geom. Funct. Anal. 10, 902–974 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Minsky, Y.N.: The classification of Kleinian surface groups I: Models and bounds. Preprint, Stony Brook (2002)Google Scholar
  19. 19.
    Sela, Z.: Acylindrical accessibility for groups. Invent. Math. 129, 527–565 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Shackleton, K.J.: A computational acylindricity theorem for the mapping class group. Preprint, Southampton (2005)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Brian H. Bowditch
    • 1
    • 2
  1. 1.School of MathematicsUniversity of SouthamptonHighfieldEngland
  2. 2.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations