Advertisement

Inventiones mathematicae

, Volume 170, Issue 3, pp 541–576 | Cite as

Convergence of the Yamabe flow in dimension 6 and higher

  • Simon Brendle
Article

Keywords

Manifold Scalar Curvature Weyl Tensor Compact Riemannian Manifold Constant Scalar Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosetti, A., Malchiodi, A.: A multiplicity result for the Yamabe problem on S n. J. Funct. Anal. 168, 529–561 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl., IX. Sér. 55, 269–296 (1976)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)zbMATHGoogle Scholar
  5. 5.
    Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 69, 217–278 (2005)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Brendle, S.: Blow-up phenomena for the Yamabe equation. J. Am. Math. Soc. (to appear)Google Scholar
  7. 7.
    Chow, B.: The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Commun. Pure Appl. Math. 45, 1003–1014 (1992)zbMATHCrossRefGoogle Scholar
  8. 8.
    Druet, O., Hebey, E.: Elliptic equations of Yamabe type. Int. Math. Res. Surv. 1, 1–113 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hebey, E., Vaugon, M.: Le problème de Yamabe équivariant. Bull. Sci. Math. 117, 241–286 (1993)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Lee, J.M., Parker, M.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lohkamp, J.: The higher dimensional positive mass theorem I. Preprint (2006)Google Scholar
  12. 12.
    Schoen, R.M.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Schoen, R.M.: A report on some recent progress on nonlinear problems in geometry. In: Surveys in Differential Geometry, pp. 201–241. Lehigh University, Bethlehem, PA (1991)Google Scholar
  14. 14.
    Schoen, R.M., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Schoen, R.M., Yau, S.T.: Lectures on Differential Geometry. International Press, Cambridge, MA (1994)zbMATHGoogle Scholar
  16. 16.
    Schwetlick, H., Struwe, M.: Convergence of the Yamabe flow for large energies. J. Reine Angew. Math. 562, 59–100 (2003)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Taylor, M.: Partial Differential Equations, III. Applied Mathematical Sciences, vol. 117. Springer, New York (1997)Google Scholar
  18. 18.
    Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ye, R.: Global existence and convergence of the Yamabe flow. J. Differ. Geom. 39, 35–50 (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations