Inventiones mathematicae

, Volume 170, Issue 2, pp 297–326

Universal lattices and unbounded rank expanders

Article

Abstract

We study the representations of non-commutative universal lattices and use them to compute lower bounds of the τ-constant for the commutative universal lattices Gd,k=SLd(ℤ[x1,...,xk]), for d≥3 with respect to several generating sets.

As an application we show that the Cayley graphs of the finite groups \(\text{SL}_{3k}(\mathbb{F}_{p})\) can be made expanders with a suitable choice of generators. This provides the first example of expander families of groups of Lie type, where the rank is not bounded and provides counter examples to two conjectures of A. Lubotzky and B. Weiss.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Lubotzky, A., Wigderson, A.: Semi-direct product in groups and zig-zag product in graphs: connections and applications (extended abstract). In: 42nd IEEE Symposium on Foundations of Computer Science, Las Vegas, NV, 2001, pp. 630–637. IEEE Computer Soc., Los Alamitos, CA (2001)Google Scholar
  2. 2.
    Burger, M.: Kazhdan constants for SL(3,ℤ). J. Reine Angew. Math. 413, 36–67 (1991)MATHMathSciNetGoogle Scholar
  3. 3.
    Carter, D., Keller, G.: Bounded elementary generation of \(\textrm{SL}^{n}(\mathcal{O})\). Am. J. Math. 105(3), 673–687 (1983)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dennis, R.K., Stein, M.R.: K 2 of discrete valuation rings. Adv. Math. 18(2), 182–238 (1975)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dennis, R.K., Vaserstein, L.N.: On a question of M. Newman on the number of commutators. J. Algebra 118(1), 150–161 (1988)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ellers, E.W., Gordeev, N.: On the conjectures of J. Thompson and O. Ore. Trans. Am. Math. Soc. 350(9), 3657–3671 (1998)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kassabov, M.: Counter example to a conjecture of Lubotzky and Weiss. (in preparation)Google Scholar
  8. 8.
    Kassabov, M.: Kazhdan constants for SLn(ℤ). Int. J. Algebra Comput. 15(5–6), 971–995 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kassabov, M., Nikolov, N.: Cartesian products as profinite completions. Int. Math. Res. Not. 2006, Art. ID 72947, 17pp. (2006)Google Scholar
  10. 10.
    Kassabov, M., Nikolov, N.: Universal lattices and property tau. Invent. Math. 165(1), 209–224 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lubotzky, A.: Discrete Groups, Expanding Graphs and Invariant Measures. Prog. Math., vol. 125. Birkhäuser, Basel (1994)MATHGoogle Scholar
  12. 12.
    Lubotzky, A.: Cayley graphs: eigenvalues, expanders and random walks. In: Surveys in Combinatorics, 1995 (Stirling). Lond. Math. Soc. Lect. Note Ser., vol. 218, pp. 155–189. Cambridge Univ. Press, Cambridge (1995)Google Scholar
  13. 13.
    Lubotzky, A., Weiss, B.: Groups and expanders. In: Expanding Graphs, Princeton, NJ, 1992. DIMACS, Ser. Discrete Math. Theor. Comput. Sci., vol. 10, pp. 95–109. Am. Math. Soc., Providence, RI (1993)Google Scholar
  14. 14.
    Lubotzky, A., Żuk, A.: On Property τ. (in preparation)Google Scholar
  15. 15.
    Meshulam, R., Wigderson, A.: Expanders in group algebras. Combinatorica 24(4), 659–680 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nikolov, N., Segal, D.: Direct products and profinite completions. (preprint)Google Scholar
  17. 17.
    Shalom, Y.: The algebraization of Kazhdan’s property (T). In: Proceedings of the International Congress of Mathematicians (Madrid, August 22–30, 2006), vol. II, pp. 1283–1310. Eur. Math. Soc., Zürich (2006)Google Scholar
  18. 18.
    Shalom, Y.: Bounded generation and Kazhdan’s property (T). Publ. Math., Inst. Hautes Étud. Sci. 90, 145–168 (1999)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Steinberg, R.: Generators for simple groups. Can. J. Math. 14, 277–283 (1962)MATHMathSciNetGoogle Scholar
  20. 20.
    Vaserstein, L.N.: Bass’s first stable range condition. J. Pure Appl. Algebra 34(2–3), 319–330 (1984)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations