Advertisement

Inventiones mathematicae

, Volume 170, Issue 2, pp 231–241 | Cite as

Triangulated categories without models

  • Fernando MuroEmail author
  • Stefan Schwede
  • Neil Strickland
Article

Abstract

We exhibit examples of triangulated categories which are neither the stable category of a Frobenius category nor a full triangulated subcategory of the homotopy category of a stable model category. Even more drastically, our examples do not admit any non-trivial exact functors to or from these algebraic respectively topological triangulated categories.

Keywords

Mapping Cone Triangulate Category Homotopy Category Exact Functor Exact Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bousfield, A.K., Friedlander, E.M.: Homotopy theory of Γ-spaces, spectra and bisimplicial sets. In: Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, Ill., 1977), II. Lect. Notes Math., vol. 658, pp. 80–130. Springer, Berlin (1978)CrossRefGoogle Scholar
  2. 2.
    Cisinski, D.-C.: Propriétés universelles et extensions de Kan dérivées. Preprint (2002).Google Scholar
  3. 3.
    Cohen, I.S.: On the structure and ideal theory of complete local rings. Trans. Am. Math. Soc. 59, 54–106 (1946)zbMATHCrossRefGoogle Scholar
  4. 4.
    Franke, J.: Uniqueness theorems for certain triangulated categories possessing an Adams spectral sequence. K-theory Preprint Archives #139 (1996) http://www.math.uiuc.edu/K-theory/Google Scholar
  5. 5.
    Gelfand, S.I., Manin, Y.I.: Methods of Homological Algebra, 2nd edn. Springer Monographs in Mathematics. Springer, Berlin (2003)Google Scholar
  6. 6.
    Grothendieck, A.: Dérivateurs, manuscript, around 1990, partially available from http://www.math.jussieu.fr/˜maltsin/groth/Derivateurs.htmlGoogle Scholar
  7. 7.
    Heller, A.: Stable homotopy categories. Bull. Am. Math. Soc. 74, 28–63 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Heller, A.: Homotopy theories. Mem. Am. Math. Soc. 71 (383), vi, 78 (1988)Google Scholar
  9. 9.
    Heller, A.: Stable homotopy theories and stabilization. J. Pure Appl. Algebra 115, 113–130 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hovey, M.: Model Categories. Math. Surv. Monogr., vol. 63. Am. Math. Soc., Providence, RI (1999)Google Scholar
  11. 11.
    Keller, B.: On triangulated orbit categories. Doc. Math. 74, 551–581 (2005)Google Scholar
  12. 12.
    Keller, B.: On differential graded categories. In: Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006. vol. II, pp. 151–190, Eur. Math. Soc., Zürich (2006)Google Scholar
  13. 13.
    Lam, T.Y.: Lectures on Modules and Rings. Grad. Texts Math., vol. 189. Springer, New-York (1999)zbMATHGoogle Scholar
  14. 14.
    Lurie, J.: Derived algebraic geometry I: Stable infinity categories. math.CT/0608228Google Scholar
  15. 15.
    Neeman, A.: Triangulated Categories. Ann. Math. Stud., vol. 148. Princeton University Press, Princeton, NJ (2001)zbMATHGoogle Scholar
  16. 16.
    Schwede, S.: Algebraic versus topological triangulated categories. In: Extended notes of a talk given at the ICM 2006 Satellite Workshop on Triangulated Categories, Leeds, UK (2006) http://www.math.uni-bonn.de/people/schwede/leeds.pdfGoogle Scholar
  17. 17.
    Schwede, S., Shipley, B.: A uniqueness theorem for stable homotopy theory. Math. Z. 239, 803–828 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Fernando Muro
    • 1
    Email author
  • Stefan Schwede
    • 2
  • Neil Strickland
    • 3
  1. 1.Department d’Àlgebra i GeometriaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany
  3. 3.Department of Pure MathematicsUniversity of SheffieldSheffieldUK

Personalised recommendations