Triangulated categories without models
Article
First Online:
- 252 Downloads
- 9 Citations
Abstract
We exhibit examples of triangulated categories which are neither the stable category of a Frobenius category nor a full triangulated subcategory of the homotopy category of a stable model category. Even more drastically, our examples do not admit any non-trivial exact functors to or from these algebraic respectively topological triangulated categories.
Keywords
Mapping Cone Triangulate Category Homotopy Category Exact Functor Exact Triangle
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bousfield, A.K., Friedlander, E.M.: Homotopy theory of Γ-spaces, spectra and bisimplicial sets. In: Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, Ill., 1977), II. Lect. Notes Math., vol. 658, pp. 80–130. Springer, Berlin (1978)CrossRefGoogle Scholar
- 2.Cisinski, D.-C.: Propriétés universelles et extensions de Kan dérivées. Preprint (2002).Google Scholar
- 3.Cohen, I.S.: On the structure and ideal theory of complete local rings. Trans. Am. Math. Soc. 59, 54–106 (1946)zbMATHCrossRefGoogle Scholar
- 4.Franke, J.: Uniqueness theorems for certain triangulated categories possessing an Adams spectral sequence. K-theory Preprint Archives #139 (1996) http://www.math.uiuc.edu/K-theory/Google Scholar
- 5.Gelfand, S.I., Manin, Y.I.: Methods of Homological Algebra, 2nd edn. Springer Monographs in Mathematics. Springer, Berlin (2003)Google Scholar
- 6.Grothendieck, A.: Dérivateurs, manuscript, around 1990, partially available from http://www.math.jussieu.fr/˜maltsin/groth/Derivateurs.htmlGoogle Scholar
- 7.Heller, A.: Stable homotopy categories. Bull. Am. Math. Soc. 74, 28–63 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
- 8.Heller, A.: Homotopy theories. Mem. Am. Math. Soc. 71 (383), vi, 78 (1988)Google Scholar
- 9.Heller, A.: Stable homotopy theories and stabilization. J. Pure Appl. Algebra 115, 113–130 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Hovey, M.: Model Categories. Math. Surv. Monogr., vol. 63. Am. Math. Soc., Providence, RI (1999)Google Scholar
- 11.Keller, B.: On triangulated orbit categories. Doc. Math. 74, 551–581 (2005)Google Scholar
- 12.Keller, B.: On differential graded categories. In: Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006. vol. II, pp. 151–190, Eur. Math. Soc., Zürich (2006)Google Scholar
- 13.Lam, T.Y.: Lectures on Modules and Rings. Grad. Texts Math., vol. 189. Springer, New-York (1999)zbMATHGoogle Scholar
- 14.Lurie, J.: Derived algebraic geometry I: Stable infinity categories. math.CT/0608228Google Scholar
- 15.Neeman, A.: Triangulated Categories. Ann. Math. Stud., vol. 148. Princeton University Press, Princeton, NJ (2001)zbMATHGoogle Scholar
- 16.Schwede, S.: Algebraic versus topological triangulated categories. In: Extended notes of a talk given at the ICM 2006 Satellite Workshop on Triangulated Categories, Leeds, UK (2006) http://www.math.uni-bonn.de/people/schwede/leeds.pdfGoogle Scholar
- 17.Schwede, S., Shipley, B.: A uniqueness theorem for stable homotopy theory. Math. Z. 239, 803–828 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
Copyright information
© Springer-Verlag 2007