Inventiones mathematicae

, Volume 168, Issue 2, pp 321–370 | Cite as

Fake projective planes

  • Gopal PrasadEmail author
  • Sai-Kee Yeung


Fundamental Group Division Algebra Class Number Hermitian Form Quadratic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bombieri, E.: Canonical models of surfaces of general type. Publ. Math., Inst. Hautes Étud. Sci. 42, 171–220 (1972)zbMATHGoogle Scholar
  2. 2.
    Borel, A., Prasad, G.: Finiteness theorems for discrete subgroups of bounded covolume in semisimple groups. Publ. Math., Inst. Hautes Étud. Sci. 69, 119–171 (1989)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Borevich, Z.I., Shafarevich, I.R.: Number theory. Academic Press, New York (1966)zbMATHGoogle Scholar
  4. 4.
    Friedman, E.: Analytic formulas for the regulator of a number field. Invent. Math. 98, 599–622 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Holzapfel, R.-P.: Ball and surface arithmetics. Vieweg & Sohn, Wiesbaden (1998)zbMATHGoogle Scholar
  6. 6.
    Ishida, M.-N., Kato, F.: The strong rigidity theorem for non-archimedean uniformization. Tohoku Math. J. 50, 537–555 (1998)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Klingler, B.: Sur la rigidité de certains groupes fonndamentaux, l’arithméticité des réseaux hyperboliques complexes, et les ‘faux plans projectifs’. Invent. Math. 153, 105–143 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kollár, J.: Shafarevich maps and automorphic forms. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  9. 9.
    Martinet, J.: Petits discriminants des corps de nombres. Number theory days, 1980 (Exeter, 1980), Lond. Math. Soc. Lect. Note Ser., vol. 56, pp. 151–193. Cambridge Univ. Press, Cambridge-New York, (1982)Google Scholar
  10. 10.
    Mostow, G.D.: Strong rigidity of locally symmetric spaces. In: Ann. Math. Stud., vol. 78. Princeton University Press, Princeton (1973)zbMATHGoogle Scholar
  11. 11.
    Mumford, D.: An algebraic surface with K ample, K 2=9, p g=q=0. Am. J. Math. 101, 233–244 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, 3rd edn. Springer, New York (2000)Google Scholar
  13. 13.
    Odlyzko, A.M.: Some analytic estimates of class numbers and discriminants. Invent. Math. 29, 275–286 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Odlyzko, A.M.: Discriminant bounds.∼odlyzko/unpublished/index.html.Google Scholar
  15. 15.
    Platonov, V.P., Rapinchuk, A.S.: Algebraic groups and Number theory. Academic Press, New York (1994)zbMATHGoogle Scholar
  16. 16.
    Prasad, G.: Volumes of S-arithmetic quotients of semi-simple groups. Publ. Math., Inst. Hautes Étud. Sci. 69, 91–117 (1989)zbMATHGoogle Scholar
  17. 17.
    Prasad, G., Rapinchuk, A.S.: Computation of the metaplectic kernel. Publ. Math., Inst. Hautes Étud. Sci. 84, 91–187 (1996)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Prasad, G., Yu, J.-K.: On finite group actions on reductive groups and buildings. Invent. Math. 147, 545–560 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Reider, I.: Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. 127, 309–316 (1988)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Riehm, C.: The norm 1 group of \(\mathfrak{p}\)-adic division algebra. Am. J. Math. 92, 499–523 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rogawski, J.D.: Automorphic representations of unitary groups in three variables. In: Ann. Math. Stud., vol. 123. Princeton University Press, Princeton (1990)zbMATHGoogle Scholar
  22. 22.
    Scharlau, W.: Quadratic and hermitian forms. Springer, New York (1985)zbMATHGoogle Scholar
  23. 23.
    Serre, J.-P.: Cohomologie des groupes discrets. In: Ann. Math. Stud., vol. 70. Princeton University Press, Princeton (1971)Google Scholar
  24. 24.
    Serre, J.-P.: A course in arithmetic. Springer, New York (1973)zbMATHGoogle Scholar
  25. 25.
    Serre, J.-P.: Galois cohomology. Springer, New York (1997)zbMATHGoogle Scholar
  26. 26.
    Siegel, C.L.: Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Gött., 87–102 (1969)Google Scholar
  27. 27.
    Slavutskii, I.Sh.: On the Zimmert estimate for the regulator of an algebraic field. English translation of Mat. Zametki in Math. Notes 51, 531–532 (1992)Google Scholar
  28. 28.
    Tits, J.: Classification of algebraic semisimple groups. Algebraic Groups and Discontinuous Subgroups. Proc. Am. Math. Soc. Symp. Pure Math. 9, 33–62 (1966)Google Scholar
  29. 29.
    Tits, J.: Reductive groups over local fields. Proc. Am. Math. Soc. Symp. Pure Math. 33(1), 29–69 (1979)MathSciNetGoogle Scholar
  30. 30.
    Tsuyumine, S.: On values of L-functions of totally real algebraic number fields at integers. Acta Arith. 76(4), 359–392 (1996)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Washington, L.C.: Introduction to cyclotomic fields, 2nd edn. In: Grad. Texts Math., vol. 83. Springer, New York, (1997)zbMATHGoogle Scholar
  32. 32.
    Yeung, S.-K.: Integrality and arithmeticity of co-compact lattices corresponding to certain complex two-ball quotients of Picard number one. Asian J. Math. 8, 107–130 (2004)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Zimmert, R.: Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent. Math. 62, 367–380 (1981)CrossRefMathSciNetGoogle Scholar
  34. 34.
    The Bordeaux Database, Tables obtainable from: Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations