Inventiones mathematicae

, Volume 168, Issue 1, pp 23–81 | Cite as

Stringy K-theory and the Chern character

  • Tyler J. JarvisEmail author
  • Ralph Kaufmann
  • Takashi Kimura


We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.

We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.

We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.

We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.


Vector Bundle Conjugacy Class Projective Variety Ring Homomorphism Chern Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovich, D., Graber, T., Vistoli, A.: Algebraic orbifold quantum products. In: Adem, A., Morava, J., Ruan, Y. (eds.) Orbifolds in Mathematics and Physics. Contemp. Math., vol. 310, pp. 1–25. (2002). Am. Math. Soc., Providence, RI (2002). math.AG/0112004Google Scholar
  2. 2.
    Adem, A., Ruan, Y.: Twisted orbifold K-theory. Commun. Math. Phys. 273(3), 533–56 (2003). math.AT/0107168Google Scholar
  3. 3.
    Adem, A., Ruan, Y., Zhan, B.: A stringy product on twisted orbifold K-theory. Preprint. math.AT/0605534Google Scholar
  4. 4.
    Atiyah, M.F., Hirzebruch, F.: The Riemann–Roch theorem for analytic embeddings. Topology 1, 151–166 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Atiyah, M.F., Segal, G.: On equivariant Euler characteristics. J. Geom. Phys. 6, 671–677 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, W., Ruan, Y.: A new cohomology theory for orbifold. Commun. Math. Phys. 248(1), 1–31 (2004). math.AG/0004129Google Scholar
  7. 7.
    Chen, W., Ruan, Y.: Orbifold Gromov–Witten theory. In: Adem, A., Morava, J., Ruan, Y., (eds.) Orbifolds in Mathematics and Physics. Contemp. Math., vol. 310, pp. 25–85. Am. Math. Soc., Providence, RI (2002). math.AG/0103156Google Scholar
  8. 8.
    Chen, B., Hu, S.: A deRham model for Chen–Ruan cohomology ring of Abelian orbifolds. Math. Ann. 336(1), 51–71 (2006). math.SG/0408265zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dixon, L., Harvey, J.A., Vafa, C., Witten, E.: Strings on Orbifolds. Nucl. Phys. B261, 678 (1985)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Dolgushev, V., Etingof, P.: Hochschild cohomology of quantized symplectic orbifolds and the Chen–Ruan cohomology. Int. Math. Res. Not. 2005(27), 1657–1688 (2005). math.QA/0410562zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Edidin, D., Graham, W.: NonAbelian localization in equivariant K-theory and Riemann–Roch for quotients. Adv. Math. 198(2), 547–582 (2005). math.AG/0411213Google Scholar
  12. 12.
    Fantechi, B., Göttsche, L.: Orbifold cohomology for global quotients. Duke Math. J. 117(2), 197–227 (2003). math.AG/0104207Google Scholar
  13. 13.
    Farkas, H., Kra, I.: Riemann Surfaces, 2nd edn. Springer, New York (1991)Google Scholar
  14. 14.
    Frenkel, E., Szczesny, M.: Chiral de Rham complex and orbifolds. Preprint. math.AG/0307181Google Scholar
  15. 15.
    Fulton, W.: Intersection Theory. Springer, New York (1998)zbMATHGoogle Scholar
  16. 16.
    Fulton, W., Harris, J.: Representation Theory: a First Course. Springer, New York (1991)zbMATHGoogle Scholar
  17. 17.
    Fulton, W., Lang, S.: Riemann–Roch Algebra. Springer, New York (1985)zbMATHGoogle Scholar
  18. 18.
    Goldin, R., Holm, T.S., Knutson, A.: Orbifold cohomology of torus quotients. Preprint. math.SG/0502429Google Scholar
  19. 19.
    Ginzburg, V., Guillemin, V., Karshon, Y.: Moment maps, cobordisms, and Hamiltonian group actions. Am. Math. Soc., Providence, RI (2002)zbMATHGoogle Scholar
  20. 20.
    Givental, A.: On the WDVV-equation in quantum K-theory. Mich. Math. J. 48, 295–304 (2000). math.AG/0003158Google Scholar
  21. 21.
    Jarvis, T., Kaufmann, R., Kimura, T.: Pointed admissible G-covers and G-equivariant cohomological Field Theories. Compos. Math. 141(4), 926–978 (2005). math.AG/0302316Google Scholar
  22. 22.
    Joshua, R.: Higher Intersection theory for algebraic stacks: I. K-Theory, 27(2), 134–195 (2002)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Joshua, R.: K-Theory and absolute cohomology for algebraic stacks. K-theory archive #0732. Preprint (2005)Google Scholar
  24. 24.
    Kaledin, D.: Multiplicative McKay correspondence in the symplectic case. Preprint. math.AG/0311409Google Scholar
  25. 25.
    Kani, E.: The Galois-module structure of the space of holomorphic differentials of a curve. J. Reine Angew. Math. 367, 187–206 (1986)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Karoubi, M.: K-Theory, An Introduction. Springer, Berlin–New York (1978)Google Scholar
  27. 27.
    Kaufmann, R.: Orbifold Frobenius algebras, cobordisms, and monodromies. In: Adem, A., Morava, J., Ruan, Y. (eds.) Orbifolds in Mathematics and Physics. Contemp. Math., vol. 310, pp. 135–162 (2002)Google Scholar
  28. 28.
    Kaufmann, R.: Orbifolding Frobenius algebras. Int. J. Math. 14(6), 573–617 (2003). math.AG/0107163Google Scholar
  29. 29.
    Kaufmann, R.: The algebra of discrete torsion. J. Algebra 282(1), 232–259 (2004). math.AG/0208081Google Scholar
  30. 30.
    Kaufmann, R.: Discrete torsion, symmetric products and the Hilbert scheme. In: Hertling, C., Marcolli, M. (eds.) Frobenius Manifolds, Quantum Cohomology and Singularities. Aspects Math., vol. E36, Vieweg, Wiesbaden (2004)Google Scholar
  31. 31.
    Kleiman, S.: Algebraic Cycles and the Weil Conjectures. In: Grothendieck, A., Kuiper, N. (eds.) Dix exposés sur la cohomologie des schémas. North-Holland, Amsterdam (1968)Google Scholar
  32. 32.
    Lee, Y.P.: Quantum K-theory I: Foundations. Duke Math. J. 121(3), 389–424 (2004). math.AG/0105014Google Scholar
  33. 33.
    Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operations. Adv. Math. 7, 29–56 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Ruan, Y.: Stringy orbifolds. In: Adem, A., Morava, J., Ruan, Y. (eds.) Orbifolds in Mathematics and Physics. Contemp. Math., vol. 310, pp. 259–299 (2002)Google Scholar
  35. 35.
    Berthelot, P., Grothendieck, A., Illusie, L.: Théorie des intersections et théorème de Riemann–Roch. Lect. Notes Math., vol. 225. Springer, Berlin (1971)zbMATHGoogle Scholar
  36. 36.
    Shanahan, P.: The Atiyah–Singer Index Theorem. Springer, New York (1978)zbMATHGoogle Scholar
  37. 37.
    Toen, B.: Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford. K-Theory 18(1), 33–76 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Totaro, B.: The resolution property for schemes and stacks. J. Reine Angew. Math. 577, 1–22 (2004). math.AG/0207210zbMATHMathSciNetGoogle Scholar
  39. 39.
    Turaev, V.: Homotopy field theory in dimension 2 and group-algebras. Preprint. math.QA/9910010Google Scholar
  40. 40.
    Uribe, B.: Orbifold cohomology of the symmetric product. Commun. Anal. Geom. 13(1), 113–128 (2005). math.AT/0109125zbMATHMathSciNetGoogle Scholar
  41. 41.
    Vistoli, A.: Higher equivariant K-theory for finite group actions. Duke Math. J. 63(2), 399–419 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Vezzosi, G., Vistoli, A.: Higher algebraic K-theory for actions of diagonalizable groups. Invent. Math. 153(1), 1–44 (2003). math.AG/0107174Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Tyler J. Jarvis
    • 1
    Email author
  • Ralph Kaufmann
    • 2
  • Takashi Kimura
    • 3
  1. 1.Department of MathematicsBrigham Young UniversityProvoUSA
  2. 2.Department of MathematicsUniversity of ConnecticutStorrsUSA
  3. 3.Department of Mathematics and StatisticsBoston UniversityBostonUSA

Personalised recommendations