Advertisement

Inventiones mathematicae

, Volume 167, Issue 3, pp 615–667 | Cite as

The homotopy theory of dg-categories and derived Morita theory

  • Bertrand ToënEmail author
Article

Abstract

The main purpose of this work is to study the homotopy theory of dg-categories up to quasi-equivalences. Our main result is a description of the mapping spaces between two dg-categories C and D in terms of the nerve of a certain category of (C,D)-bimodules. We also prove that the homotopy category Ho(dg-Cat) possesses internal Hom’s relative to the (derived) tensor product of dg-categories. We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories C and D as the dg-category of (C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the classifying space of dg-categories (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent (resp. perfect) complexes on their product.

Keywords

Model Category Isomorphism Class Natural Isomorphism Monoidal Category Homotopy Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergner, J.: A model category structure on the category of simplicial categories. To appear in Trans. Am. Math. Soc. (Preprint math.AT/0406507)Google Scholar
  2. 2.
    Bondal, A., Kapranov, M.: Enhanced triangulated categories. Math. URSS Sbornik 70, 93–107 (1991)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bondal, A., Larsen, M., Lunts, V.A.: Grothendieck ring of pretriangulated categories. Int. Math. Res. Not. 2004(29), 1461–1495 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bondal, A., Van Den Bergh, M.: Generators and representability of functors in commutative and non-commutative geometry. Mosc. Math. J. 3(1), 1–36 (2003)MathSciNetGoogle Scholar
  5. 5.
    Drinfeld, V.: Quotient of dg-categories. J. Algebra 272(2), 643–691 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dugger, D.: Combinatorial model categories have presentations. Adv. Math. 164, 177–201 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dugger, D., Shipley, B.: K-theory and derived equivalences. Duke J. Math 124(3), 587–617 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dwyer, W., Kan, D.: Homotopy commutative diagrams and their realizations. J. Pure Appl. Algebra 57(1), 5–24 (1989)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Dwyer, W., Kan, D.: Simplicial localization of categories. J. Pure and Appl. Algebra 17, 267–284 (1980)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hirschhorn, P.: Model Categories and their Localizations. Math. Surveys and Monographs Series, vol. 99. AMS, Providence, (2003)zbMATHGoogle Scholar
  11. 11.
    Hirschowitz, A., Simpson, C.: Descente pour les n-champs. Preprint math.AG/9807049Google Scholar
  12. 12.
    Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. Am. Math. Soc., Providence (1998)Google Scholar
  13. 13.
    Hovey, M.: Model category structures on chain complexes of sheaves. Trans. Am. Math. Soc. 353(6), 2441–2457 (2001)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Keller, B.: On the cyclic homology of exact categories. J. Pure Appl. Algebra 136, 1–56 (1999)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Keller, B.: Hochschild cohomology and derived Picard groups. J. Pure Appl. Algebra 190(1–3), 177–196 (2004)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kock, J., Toën, B.: Simplicial localization of monoidal structures and a non-linear version of Deligne’s conjecture. Compos. Math. 141(1), 253–261 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lyubashenko, V.: Category of A -categories. Homology Homotopy Appl. 5(1), 1–48 (2003)MathSciNetGoogle Scholar
  18. 18.
    Lyubashenko, V.: Free A -categories. Theory Appl. Categ. 16(9), 174–205 (2006)MathSciNetGoogle Scholar
  19. 19.
    Orlov, D.: Equivalences of derived categories and K3 surfaces. J. Math. Sci. Alg. Geom. 85(5), 1361–1381 (1997)MathSciNetGoogle Scholar
  20. 20.
    Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39, 436–456 (1989)MathSciNetGoogle Scholar
  21. 21.
    Rickard, J.: Derived equivalences as derived functors, J. Lond. Math. Soc., II. Ser. 43(1), 37–48 (1991)MathSciNetGoogle Scholar
  22. 22.
    Rouquier, R., Zimmermann, A.: Picard groups for derived module categories. Proc. Lond. Math. Soc., III. Ser. 87(3), 187–225 (2003)MathSciNetGoogle Scholar
  23. 23.
    Shipley, B., Schwede, S.: Stable model categories are categories of modules. Topology 42(1), 103–153 (2003)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Tabuada, G.: Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C. R. Acad. Sci., Paris 340, 15–19 (2005)MathSciNetGoogle Scholar
  25. 25.
    Toën, B.: Dualité de Tannaka supérieure I: Structures monoidales. (Preprint Max-Planck)Google Scholar
  26. 26.
    Toën, B.: Homotopical and higher categorical structures in algebraic geometry. Hablitation thesis available at math.AG/0312262Google Scholar
  27. 27.
    Toën, B., Vezzosi, G.: Homotopical algebraic geometry I: Topos theory. Adv. Math. 193, 257–372 (2005)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Toën, B., Vezzosi, G.: Homotopical algebraic geometry II: Geometric stacks and applications. To appear in Mem. Am. Math. Soc. (Preprint math.AG/0404373)Google Scholar
  29. 29.
    Yekutieli, A.: The derived Picard group is a locally algebraic group. Algebr. Represent. Theory 7(1), 53–57 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire Emile Picard UMR CNRS 5580Université Paul SabatierToulouse Cedex 9France

Personalised recommendations