Inventiones mathematicae

, Volume 167, Issue 3, pp 455–513 | Cite as

On the 4-rank of class groups of quadratic number fields

Article

Abstract

We prove that the 4-rank of class groups of quadratic number fields behaves as predicted in an extension due to Gerth of the Cohen–Lenstra heuristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brüdern, J.: Einführung in die analytische Zahlentheorie. Springer, Berlin Heidelberg New York (1995)Google Scholar
  2. 2.
    Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields. In: Number Theory, Noordwijkerhout 1983. Lecture Notes in Math., vol. 1068, pp. 33–62. Springer, Berlin (1984)Google Scholar
  3. 3.
    Davenport, H., Heilbronn, H.: On the density of discriminants of cubic fields II. Proc. R. Soc. Lond. Ser. A 322(1551), 405–420 (1971)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dieudonné, J.: La Géométrie des Groupes Classiques. 3rd edn., Springer, Berlin Heidelberg New York (1971)Google Scholar
  5. 5.
    Fouvry, É., Klüners, J.: Cohen–Lenstra heuristics of quadratic number fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) 7th Algorithmic Number Theory Symposium, 23–28 July 2006, Lecture Notes in Computer Science, vol. 4076, pp. 40–55. Springer, Berlin (2006)Google Scholar
  6. 6.
    Gerth III, F.: The 4-class ranks of quadratic fields. Invent. Math. 77(3), 489–515 (1984)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Gerth III, F.: Extension of conjectures of Cohen and Lenstra. Expo. Math. 5(2), 181–184 (1987)MATHGoogle Scholar
  8. 8.
    Hardy, G.H., Ramanujan, S.: The normal number of prime factors of a number n. Q. J. Math. 48, 76–92 (1920)Google Scholar
  9. 9.
    Heath-Brown, D.R.: The size of Selmer groups for the congruent number problem. Invent. Math. 111, 171–195 (1993)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Heath-Brown, D.R.: The size of Selmer groups for the congruent number problem, II. Invent. Math. 118, 331–370 (1994)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Heath-Brown, D.R.: A mean value estimate for real characters sums. Acta. Arith. 72, 235–275 (1995)MathSciNetMATHGoogle Scholar
  12. 12.
    Heilbronn, H.: On the averages of some arithmetic functions of two variables. Mathematika 5, 1–7 (1958)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Herz, C.S.: Construction of class fields. In: Seminar on Complex Multiplication, Lecture Notes in Math., vol. 21, chap. VII. Springer, Berlin (1966)Google Scholar
  14. 14.
    Iwaniec, H., Kowalski, E.: Analytic number theory. In: Colloquium Publications, vol. 53, Am. Math. Soc. (2004)Google Scholar
  15. 15.
    Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer, Berlin Heidelberg New York (1989)Google Scholar
  16. 16.
    Redei, L.: Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math. 171, 55–60 (1934)Google Scholar
  17. 17.
    Redei, L.: Eine obere Schranke der Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math. 171, 61–64 (1934)MATHGoogle Scholar
  18. 18.
    Serre, J.P.: A Course in Arithmetic. Graduate Texts in Math., vol. 7. Springer, New York (1973)Google Scholar
  19. 19.
    Shiu, P.: A Brun–Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313, 161–170 (1980)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Mathématique, Bât. 425Univ. Paris–SudOrsay CedexFrance
  2. 2.Mathematisches InstitutHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations