Inventiones mathematicae

, Volume 167, Issue 1, pp 179–222 | Cite as

Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces

  • Maryam MirzakhaniEmail author


Modulus Space Riemann Surface Boundary Component Recursive Formula Mapping Class Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basmajian, A.: The orthogonal spectrum of a hyperbolic manifold. Am. J. Math. 115, 1139–1159 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Birman, J.S., Series, C.: Geodesics with bounded intersection number on surfaces are sparsely distributed. Topology 24, 217–225 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bismut, J.-M., Labourie, F.: Symplectic geometry and the Verlinde formulas. In: Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, vol. 5 of Surv. Differ. Geom., pp. 97–331. Boston, MA: Int. Press 1999Google Scholar
  4. 4.
    Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Boston: Birkhäuser 1992Google Scholar
  5. 5.
    Canary, R.D., Epstein, D.B.A., Green, P.: Notes on notes of Thurston. In: Analytical and Geometric Aspects of Hyperbolic Space, pp. 3–92. Cambridge :Cambridge University Press 1987Google Scholar
  6. 6.
    Donaldson, S.: Gluing techniques in the cohomology of moduli spaces. In: Topological Methods in Modern Mathematics, pp. 137–170. Houston, TX: Publish or Perish 1993Google Scholar
  7. 7.
    Goldman, W.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54, 200–225 (1984)zbMATHCrossRefGoogle Scholar
  8. 8.
    Harer, J.L., Penner, R.C.: Combinatorics of Train Tracks. Annals of Math. Studies, vol. 125. Princeton, NJ: Princeton University Press 1992Google Scholar
  9. 9.
    Harris, J., Morrison, I.: Moduli of Curves. Graduate Texts in Mathematics, vol. 187. New York: Springer 1998Google Scholar
  10. 10.
    Hocking, J., Young, G.: Topology. New York: Dover Publication 1988Google Scholar
  11. 11.
    Imayoshi, Y., Taniguchi, M.: An Introduction to Teichmüller Spaces. Tokyo: Springer 1992Google Scholar
  12. 12.
    Jeffrey, L., Kirwan, F.: Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface. Ann. Math. (2) 148, 109–196 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kaufmann, R., Manin, Y., Zagier, D.: Higher Weil-Petersson volumes of moduli spaces of stable n-pointed curves. Commun. Math. Phys. 181, 736–787 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kirwan, F.: Momentum maps and reduction in algebraic geometry. Differ. Geom. Appl. 9, 135–171 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kontsevich, M.: Intersection on the moduli space of curves and the matrix airy function. Commun. Math. Phys. 147, 1–23 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Labourie, F., McShane, G.: Cross ratios and identities for higher Thurston theory. Preprint 2006Google Scholar
  17. 17.
    Manin, Y., Zograf, P.: Invertible cohomological field theories and Weil-Petersson volumes. Ann. Inst. Fourier 50, 519–535 (2000)zbMATHMathSciNetGoogle Scholar
  18. 18.
    McDuff, D.: Introduction to Symplectic Topology. Providence, RI: Am. Math. Soc. 1999Google Scholar
  19. 19.
    McShane, G.: Simple geodesics and a series constant over Teichmüller space. Invent. Math. 132, 607–632 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Mirzakhani, M.: Growth of the number of simple closed geodesics on a hyperbolic surface. To appear in Ann. Math.Google Scholar
  21. 21.
    Mirzakhani, M.: Weil-Petersson volumes and intersection theory on the moduli space of curves. To appear in J. Am. Math. Soc.Google Scholar
  22. 22.
    Nakanishi, T., Näätänen, M.: Areas of two-dimensional moduli spaces. Proc. Am. Math. Soc. 129, 3241–3252 (2001)zbMATHCrossRefGoogle Scholar
  23. 23.
    Penner, R.: Weil-Petersson volumes. J. Differ. Geom. 35, 559–608 (1992)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Tan, S.P., Wong, Y., Zhang, Y.: Necessary and sufficient conditions for McShane’s identity and variations. Preprint 2004Google Scholar
  25. 25.
    Tan, S.P., Wong, Y., Zhang, Y.: Generalizations of McShane’s identity to hyperbolic cone-surfaces. J. Differ. Geom. 72, 73–111 (2006)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Wolpert, S.: The Fenchel-Nielsen deformation. Ann. Math. 115, 501–528 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Wolpert, S.: On the homology of the moduli space of stable curves. Ann. Math. (2) 118, 491–523 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Zograf, P.: The Weil-Petersson volume of the moduli space of punctured spheres. In: Mapping Class Groups and Moduli Spaces of Riemann Surfaces. Contemp. Math., vol. 150, pp. 367–372. Providence, RI: Am. Math. Soc. 1993Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations