Inventiones mathematicae

, Volume 165, Issue 2, pp 325–355 | Cite as

Weyl group multiple Dirichlet series II: The stable case

  • Ben Brubaker
  • Daniel Bump
  • Solomon Friedberg
Article

Abstract

To each reduced root system Φ of rank r, and each sufficiently large integer n, we define a family of multiple Dirichlet series in r complex variables, whose group of functional equations is isomorphic to the Weyl group of Φ. The coefficients in these Dirichlet series exhibit a multiplicativity that reduces the specification of the coefficients to those that are powers of a single prime p. For each p, the number of nonzero such coefficients is equal to the order of the Weyl group, and each nonzero coefficient is a product of n-th order Gauss sums. The root system plays a basic role in the combinatorics underlying the proof of the functional equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bochner, S.: A theorem on analytic continuation of functions in several variables. Ann. Math. (2) 39, 14–19 (1938)Google Scholar
  2. 2.
    Bourbaki, N.: Lie groups and Lie algebras. Chaps. 4–6. Elements of Mathematics (Berlin). Berlin: Springer 2002. Translated from the 1968 French original by Andrew PressleyGoogle Scholar
  3. 3.
    Brubaker, B., Bump, D.: On Kubota’s Dirichlet series. Accepted for publication in CrelleGoogle Scholar
  4. 4.
    Brubaker, B., Bump, D.: Residues of Weyl group multiple Dirichlet series associated to \(\widetilde{\operatorname{GL}}_{n +1}\). Preprint available at http://sporadic.stanford.edu/bump/lseries.psGoogle Scholar
  5. 5.
    Brubaker, B., Bump, D., Chinta, G., Friedberg, S., Hoffstein, J.: Weyl group multiple Dirichlet series I. Preprint available at http://sporadic.stanford.edu/bump/wmd.psGoogle Scholar
  6. 6.
    Brubaker, B., Bump, D., Friedberg, S., Hoffstein, J.: Weyl group multiple Dirichlet series III: Eisenstein series and twisted unstable Ar. Preprint available at http://sporadic.stanford.edu/bump/wmd3.psGoogle Scholar
  7. 7.
    Bump, D.: Lie groups. Graduate Texts in Mathematics, vol. 225. New York: Springer 2004Google Scholar
  8. 8.
    Bump, D., Hoffstein, J.: Some conjectured relationships between theta functions and Eisenstein series on the metaplectic group. In: Number theory (New York 1985/1988), Lect. Notes Math., vol. 1383, pp. 1–11. Berlin: Springer 1989Google Scholar
  9. 9.
    Casselman, W., Shalika, J.: The unramified principal series of p-adic groups. II. The Whittaker function. Compos. Math. 41, 207–231 (1980)MATHMathSciNetGoogle Scholar
  10. 10.
    Chinta, G.: Mean values of biquadratic zeta functions. Invent. Math. 160, 145–163 (2005)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Friedberg, S., Hoffstein, J., Lieman, D.: Double Dirichlet series and the n-th order twists of Hecke L-series. Math. Ann. 327, 315–338 (2003)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hörmander, L.: An introduction to complex analysis in several variables. North-Holland Mathematical Library, vol. 7, 3rd edn. Amsterdam: North-Holland Publishing Co. 1990Google Scholar
  13. 13.
    Ireland, K., Rosen, M.: A classical introduction to modern number theory. Graduate Texts in Mathematics, vol. 84, 2nd edn. New York: Springer 1990Google Scholar
  14. 14.
    Jacquet, H.: Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. Fr. 95, 243–309 (1967)MATHMathSciNetGoogle Scholar
  15. 15.
    Kazhdan, D.A., Patterson, S.J.: Metaplectic forms. Publ. Math., Inst. Hautes Étud. Sci. 59, 35–142 (1984)MATHMathSciNetGoogle Scholar
  16. 16.
    Kubota, T.: On automorphic functions and the reciprocity law in a number field. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 2. Tokyo: Kinokuniya Book-Store Co. Ltd. 1969Google Scholar
  17. 17.
    Neukirch, J.: Algebraic number theory. Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Sciences]. Berlin: Springer 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. HarderGoogle Scholar
  18. 18.
    Patterson, S.J.: Whittaker models of generalized theta series. In: Séminaire de théorie des nombres (Paris 1982/1983). Prog. Math., vol. 51, pp. 199–232. Boston, MA: Birkhäuser 1984Google Scholar
  19. 19.
    Selberg, A.: A new type of zeta functions connected with quadratic forms. In: Report of the Institute in the Theory of Numbers, pp. 207–210. Boulder, CO: University of Colorado 1959Google Scholar
  20. 20.
    Springer, T.A.: Reductive groups. In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR 1977), Part 1. Proc. Sympos. Pure Math., XXXIII, pp. 3–27. Providence, RI: Am. Math. Soc. 1979Google Scholar
  21. 21.
    Suzuki, T.: Some results on the coefficients of the biquadratic theta series. J. Reine Angew. Math. 340, 70–117 (1983)MATHMathSciNetGoogle Scholar
  22. 22.
    Suzuki, T.: Rankin-Selberg convolutions of generalized theta series. J. Reine Angew. Math. 414, 149–205 (1991)MATHMathSciNetGoogle Scholar
  23. 23.
    Suzuki, T.: On the biquadratic theta series. J. Reine Angew. Math. 438, 31–85 (1993)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ben Brubaker
    • 1
  • Daniel Bump
    • 1
  • Solomon Friedberg
    • 2
  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Department of MathematicsBoston CollegeChestnut HillUSA

Personalised recommendations