Advertisement

Inventiones mathematicae

, Volume 164, Issue 3, pp 615–634 | Cite as

On the Kashiwara–Vergne conjecture

  • A. AlekseevEmail author
  • E. MeinrenkenEmail author
Article

Abstract

Let G be a connected Lie group, with Lie algebra \(\mathfrak{g}\). In 1977, Duflo constructed a homomorphism of \(\mathfrak{g}\)-modules \(\text{Duf}\colon S(\mathfrak{g})\to U(\mathfrak{g})\), which restricts to an algebra isomorphism on invariants. Kashiwara and Vergne (1978) proposed a conjecture on the Campbell-Hausdorff series, which (among other things) extends the Duflo theorem to germs of bi-invariant distributions on the Lie group G.

The main results of the present paper are as follows. (1) Using a recent result of Torossian (2002), we establish the Kashiwara–Vergne conjecture for any Lie group G. (2) We give a reformulation of the Kashiwara–Vergne property in terms of Lie algebra cohomology. As a direct corollary, one obtains the algebra isomorphism \(H(\mathfrak{g},S(\mathfrak{g}))\to H(\mathfrak{g},U(\mathfrak{g}))\), as well as a more general statement for distributions.

Keywords

General Statement Recent Result Algebra Isomorphism Algebra Cohomology Direct Corollary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseev, A., Meinrenken, E.: Poisson geometry and the Kashiwara-Vergne conjecture. C. R. Acad. Sci., Paris, Math. 335, 723–728 (2002)zbMATHGoogle Scholar
  2. 2.
    Alekseev, A., Petracci, E.: Uniqueness in the Kashiwara–Vergne conjecture. Preprint, math.QA/0508077Google Scholar
  3. 3.
    Andler, M., Dvorsky, A., Sahi, S.: Deformation quantization and invariant distributions. C. R. Acad. Sci. Paris, Sér. I, Math. 330, 115–120 (2000), arXiv:math.QA/9905065zbMATHMathSciNetGoogle Scholar
  4. 4.
    Andler, M., Dvorsky, A., Sahi, S.: Kontsevich quantization and invariant distributions on Lie groups. Ann. Sci. Éc. Norm. Supér., IV. Sér. 35, 371–390 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Andler, M., Sahi, S., Torossian, C.: Convolution of invariant distributions: Proof of the Kashiwara-Vergne conjecture. Lett. Math. Phys. 69, 177–203 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Duflo, M.: Opérateurs différentiels bi-invariants sur un groupe de Lie. Ann. Sci. Éc. Norm. Supér., IV. Sér. 10, 265–288 (1977)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie theory and Lie transformation groups. Berlin: Springer 1997Google Scholar
  8. 8.
    Kashiwara, M., Vergne, M.: The Campbell-Hausdorff formula and invariant hyperfunctions. Invent. Math. 47, 249–272 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Markl, M.: Homotopy algebras are homotopy algebras. Forum Math. 16, 129–160 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Pevzner, M., Torossian, Ch.: Isomorphisme de Duflo et la cohomologie tangentielle. J. Geom. Phys. 51, 486–505 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Rouvière, F.: Démonstration de la conjecture de Kashiwara-Vergne pour l’algèbre sl(2). C. R. Acad. Sci., Paris, Sér. I, Math. 292, 657–660 (1981)Google Scholar
  13. 13.
    Shoikhet, B.: Tsygan formality and Duflo formula. Math. Res. Lett. 10, 763–775 (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Torossian, C.: Sur la conjecture combinatoire de Kashiwara-Vergne. J. Lie Theory 12, 597–616 (2002)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Vergne, M.: Le centre de l’algèbre enveloppante et la formule de Campbell-Hausdorff. C. R. Acad. Sci., Paris, Sér. I, Math. 329, 767–772 (1999)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Section of MathematicsUniversity of GenevaGenève 4Switzerland
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations