On the Kashiwara–Vergne conjecture
- 181 Downloads
- 18 Citations
Abstract
Let G be a connected Lie group, with Lie algebra \(\mathfrak{g}\). In 1977, Duflo constructed a homomorphism of \(\mathfrak{g}\)-modules \(\text{Duf}\colon S(\mathfrak{g})\to U(\mathfrak{g})\), which restricts to an algebra isomorphism on invariants. Kashiwara and Vergne (1978) proposed a conjecture on the Campbell-Hausdorff series, which (among other things) extends the Duflo theorem to germs of bi-invariant distributions on the Lie group G.
The main results of the present paper are as follows. (1) Using a recent result of Torossian (2002), we establish the Kashiwara–Vergne conjecture for any Lie group G. (2) We give a reformulation of the Kashiwara–Vergne property in terms of Lie algebra cohomology. As a direct corollary, one obtains the algebra isomorphism \(H(\mathfrak{g},S(\mathfrak{g}))\to H(\mathfrak{g},U(\mathfrak{g}))\), as well as a more general statement for distributions.
Keywords
General Statement Recent Result Algebra Isomorphism Algebra Cohomology Direct CorollaryPreview
Unable to display preview. Download preview PDF.
References
- 1.Alekseev, A., Meinrenken, E.: Poisson geometry and the Kashiwara-Vergne conjecture. C. R. Acad. Sci., Paris, Math. 335, 723–728 (2002)zbMATHGoogle Scholar
- 2.Alekseev, A., Petracci, E.: Uniqueness in the Kashiwara–Vergne conjecture. Preprint, math.QA/0508077Google Scholar
- 3.Andler, M., Dvorsky, A., Sahi, S.: Deformation quantization and invariant distributions. C. R. Acad. Sci. Paris, Sér. I, Math. 330, 115–120 (2000), arXiv:math.QA/9905065zbMATHMathSciNetGoogle Scholar
- 4.Andler, M., Dvorsky, A., Sahi, S.: Kontsevich quantization and invariant distributions on Lie groups. Ann. Sci. Éc. Norm. Supér., IV. Sér. 35, 371–390 (2002)zbMATHMathSciNetGoogle Scholar
- 5.Andler, M., Sahi, S., Torossian, C.: Convolution of invariant distributions: Proof of the Kashiwara-Vergne conjecture. Lett. Math. Phys. 69, 177–203 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Duflo, M.: Opérateurs différentiels bi-invariants sur un groupe de Lie. Ann. Sci. Éc. Norm. Supér., IV. Sér. 10, 265–288 (1977)zbMATHMathSciNetGoogle Scholar
- 7.Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie theory and Lie transformation groups. Berlin: Springer 1997Google Scholar
- 8.Kashiwara, M., Vergne, M.: The Campbell-Hausdorff formula and invariant hyperfunctions. Invent. Math. 47, 249–272 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
- 9.Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 10.Markl, M.: Homotopy algebras are homotopy algebras. Forum Math. 16, 129–160 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 11.Pevzner, M., Torossian, Ch.: Isomorphisme de Duflo et la cohomologie tangentielle. J. Geom. Phys. 51, 486–505 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Rouvière, F.: Démonstration de la conjecture de Kashiwara-Vergne pour l’algèbre sl(2). C. R. Acad. Sci., Paris, Sér. I, Math. 292, 657–660 (1981)Google Scholar
- 13.Shoikhet, B.: Tsygan formality and Duflo formula. Math. Res. Lett. 10, 763–775 (2003)zbMATHMathSciNetGoogle Scholar
- 14.Torossian, C.: Sur la conjecture combinatoire de Kashiwara-Vergne. J. Lie Theory 12, 597–616 (2002)zbMATHMathSciNetGoogle Scholar
- 15.Vergne, M.: Le centre de l’algèbre enveloppante et la formule de Campbell-Hausdorff. C. R. Acad. Sci., Paris, Sér. I, Math. 329, 767–772 (1999)zbMATHMathSciNetGoogle Scholar