Advertisement

Inventiones mathematicae

, Volume 164, Issue 2, pp 399–453 | Cite as

Fibration de Hitchin et endoscopie

  • Bao Châu Ngô
Article

Abstract

We propose a geometric interpretation of the theory of elliptic endoscopy, due to Langlands and Kottwitz, in terms of the Hitchin fibration. As applications, we prove a global analog of a purity conjecture, due to Goresky, Kottwitz and MacPherson. For unitary groups, this global purity statement has been used, in a joint work with G. Laumon, to prove the fundamental lemma over a local fields of equal characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Beauville, A., Laszlo, Y.: Un lemme de descente. C. R. Acad. Sci., Paris 320, 335–340 (1995)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Beauville, A., Narasimhan, M., Ramanan, S.: Spectral curves and generalized theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100, 5–171 (1982)MathSciNetGoogle Scholar
  4. 4.
    Biswas, I., Ramanan, S.: Infinitesimal study of Hitchin pairs. J. Lond. Math. Soc. 49, 219–231 (1994)zbMATHGoogle Scholar
  5. 5.
    Bosch, S., Lutkebohmert, W., Raynaud, M.: Neron models. Ergeb. Math. 21, 1–325 (1990)MathSciNetGoogle Scholar
  6. 6.
    Deligne, P.: La conjecture de Weil II. Publ. Math., Inst. Hautes Étud. Sci. 52, 137–252 (1980)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Faltings, G.: Stable G-bundles and projective connections. J. Algebr. Geom. 2, 507–568 (1993)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Donagi, R., Gaitsgory, D.: The gerb of Higgs bundles. Transform. Groups 7, 109–153 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Goresky, M., Kottwitz, R., MacPherson, R.: Homology of affine Springer fiber in the unramified case. Duke Math. J. 121, 509–561 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique : IV. Étude locale des schémas et de morphismes de schémas, chapîtres III et IV. Publ. Math., Inst. Hautes Étud. Sci. 28, 5–255 (1966) et 32, 5–361 (1967)Google Scholar
  11. 11.
    Hitchin, N.: Stable bundles and integrable connections. Duke Math. J. 54, 91–114 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Kottwitz, R.: Isocristal with additionnal structures. Compos. Math. 56, 201–220 (1985)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Kottwitz, R.: Stable trace formula: cuspidal tempered terms. Duke Math. J. 51, 611–650 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kottwitz, R.: Stable trace formula: elliptic singular terms. Math. Ann. 275, 365–399 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kottwitz, R.: Points on some Shimura varieties over finite fields. J. Am. Math. Soc. 2, 373–444 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kottwitz, R.: Transfert factors for Lie algebra. Represent. Theory 3, 127–138 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Langlands, R.: Les débuts d’une formule des traces stables. Publ. Univ. Paris 7, vol. 13 (1983)Google Scholar
  19. 19.
    Laumon, G.: Fibres de Springer et Jacobiennes compactifiées. Prépublication arXivGoogle Scholar
  20. 20.
    Laumon, G., Ngô, B.C.: Le lemme fondamental pour les groupes unitaires. Prépublication arXivGoogle Scholar
  21. 21.
    Rapoport, M.: A guide to the reduction of Shimura varieties. Astérisque 298, 271–358 (2005)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Serre, J.-P.: Cohomologie galoisienne. Lect. Notes Math., vol. 5. Springer 1973Google Scholar
  23. 23.
    Springer, T.: Reductive groups. In: Automorphic Forms, Representations, and L-Functions. Proc. Symp. Pure Math. vol. 33-1, pp. 3–27. Am. Math. Soc. 1979Google Scholar
  24. 24.
    Veldkamp, F.D.: The center of the universal enveloping algebra of a Lie algebra in characteristic p. Ann. Sci. Éc. Norm. Supér. 5, 217–240 (1972)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Département de Mathématiques, UMR 8628Université Paris-SudOrsayFrance

Personalised recommendations