Inventiones mathematicae

, Volume 164, Issue 2, pp 399–453

Fibration de Hitchin et endoscopie

Article

Abstract

We propose a geometric interpretation of the theory of elliptic endoscopy, due to Langlands and Kottwitz, in terms of the Hitchin fibration. As applications, we prove a global analog of a purity conjecture, due to Goresky, Kottwitz and MacPherson. For unitary groups, this global purity statement has been used, in a joint work with G. Laumon, to prove the fundamental lemma over a local fields of equal characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Beauville, A., Laszlo, Y.: Un lemme de descente. C. R. Acad. Sci., Paris 320, 335–340 (1995)MATHMathSciNetGoogle Scholar
  2. 2.
    Beauville, A., Narasimhan, M., Ramanan, S.: Spectral curves and generalized theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)MATHMathSciNetGoogle Scholar
  3. 3.
    Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100, 5–171 (1982)MathSciNetGoogle Scholar
  4. 4.
    Biswas, I., Ramanan, S.: Infinitesimal study of Hitchin pairs. J. Lond. Math. Soc. 49, 219–231 (1994)MATHGoogle Scholar
  5. 5.
    Bosch, S., Lutkebohmert, W., Raynaud, M.: Neron models. Ergeb. Math. 21, 1–325 (1990)MathSciNetGoogle Scholar
  6. 6.
    Deligne, P.: La conjecture de Weil II. Publ. Math., Inst. Hautes Étud. Sci. 52, 137–252 (1980)MATHMathSciNetGoogle Scholar
  7. 7.
    Faltings, G.: Stable G-bundles and projective connections. J. Algebr. Geom. 2, 507–568 (1993)MATHMathSciNetGoogle Scholar
  8. 8.
    Donagi, R., Gaitsgory, D.: The gerb of Higgs bundles. Transform. Groups 7, 109–153 (2002)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Goresky, M., Kottwitz, R., MacPherson, R.: Homology of affine Springer fiber in the unramified case. Duke Math. J. 121, 509–561 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique : IV. Étude locale des schémas et de morphismes de schémas, chapîtres III et IV. Publ. Math., Inst. Hautes Étud. Sci. 28, 5–255 (1966) et 32, 5–361 (1967)Google Scholar
  11. 11.
    Hitchin, N.: Stable bundles and integrable connections. Duke Math. J. 54, 91–114 (1987)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)MATHMathSciNetGoogle Scholar
  13. 13.
    Kottwitz, R.: Isocristal with additionnal structures. Compos. Math. 56, 201–220 (1985)MATHMathSciNetGoogle Scholar
  14. 14.
    Kottwitz, R.: Stable trace formula: cuspidal tempered terms. Duke Math. J. 51, 611–650 (1984)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kottwitz, R.: Stable trace formula: elliptic singular terms. Math. Ann. 275, 365–399 (1986)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kottwitz, R.: Points on some Shimura varieties over finite fields. J. Am. Math. Soc. 2, 373–444 (1992)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kottwitz, R.: Transfert factors for Lie algebra. Represent. Theory 3, 127–138 (1999)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Langlands, R.: Les débuts d’une formule des traces stables. Publ. Univ. Paris 7, vol. 13 (1983)Google Scholar
  19. 19.
    Laumon, G.: Fibres de Springer et Jacobiennes compactifiées. Prépublication arXivGoogle Scholar
  20. 20.
    Laumon, G., Ngô, B.C.: Le lemme fondamental pour les groupes unitaires. Prépublication arXivGoogle Scholar
  21. 21.
    Rapoport, M.: A guide to the reduction of Shimura varieties. Astérisque 298, 271–358 (2005)MATHMathSciNetGoogle Scholar
  22. 22.
    Serre, J.-P.: Cohomologie galoisienne. Lect. Notes Math., vol. 5. Springer 1973Google Scholar
  23. 23.
    Springer, T.: Reductive groups. In: Automorphic Forms, Representations, and L-Functions. Proc. Symp. Pure Math. vol. 33-1, pp. 3–27. Am. Math. Soc. 1979Google Scholar
  24. 24.
    Veldkamp, F.D.: The center of the universal enveloping algebra of a Lie algebra in characteristic p. Ann. Sci. Éc. Norm. Supér. 5, 217–240 (1972)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Département de Mathématiques, UMR 8628Université Paris-SudOrsayFrance

Personalised recommendations