Advertisement

Inventiones mathematicae

, Volume 164, Issue 2, pp 249–278 | Cite as

Convexes divisibles IV : Structure du bord en dimension 3

  • Yves Benoist
Article

Abstract

Divisible convex sets IV: Boundary structure in dimension 3

Let Ω be an indecomposable properly convex open subset of the real projective 3-space which is divisible i.e. for which there exists a torsion free discrete group Γ of projective transformations preserving Ω such that the quotient M := Γ\Ω is compact. We study the structure of M and of ∂Ω, when Ω is not strictly convex:

The union of the properly embedded triangles in Ω projects in M onto an union of finitely many disjoint tori and Klein bottles which induces an atoroidal decomposition of M.

Every non extremal point of ∂Ω is on an edge of a unique properly embedded triangle in Ω and the set of vertices of these triangles is dense in the boundary of Ω (see Figs. 1 to 4).

Moreover, we construct examples of such divisible convex open sets Ω.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Bachman, D.: A note on Kneser-Haken finiteness. Proc. Am. Math. Soc. 132, 899–902 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Benoist, Y.: Convexes divisibles I, in Algebraic Groups and Arithmetics. Tata Inst. Fund. Res. Stud. Math., vol. 17, pp. 339–374. Narosa 2004Google Scholar
  3. 3.
    Benoist, Y.: Convexes divisibles II. Duke Math. J. 120, 97–120 (2003)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Benoist, Y.: Convexes divisibles III. To appear in Ann. Sci. Éc. Norm. Supér.Google Scholar
  5. 5.
    Benzecri, J.P.: Sur les variétés localement affines et localement projectives. Bull. Soc. Math. Fr. 88, 229–332 (1960)MATHMathSciNetGoogle Scholar
  6. 6.
    Bonahon, F.: Geometric structures on 3-manifolds, in Handbook of geometric topology, pp. 93–164. North-Holland 2002Google Scholar
  7. 7.
    Bourbaki, N.: Groupes et algèbres de Lie, ch. 4, 5 et 6. Masson 1981Google Scholar
  8. 8.
    Candel, A., Conlon, L.: Foliations I. Graduate Studies of Mathematics, vol. 23. Am. Math. Soc. 2000Google Scholar
  9. 9.
    Gillet, H., Shalen, P.: Dendrology of groups in low ℚ-ranks. J. Differ. Geom. 32, 605–712 (1990)MATHMathSciNetGoogle Scholar
  10. 10.
    Goldman, W.: Convex real projective structures on compact surfaces. J. Differ. Geom. 31, 791–845 (1990)MATHGoogle Scholar
  11. 11.
    Hempel, J.: 3-manifolds. Ann. Math. Stud., vol. 86. Princeton Univ. Press 1976Google Scholar
  12. 12.
    Johnson, D., Millson, J.: Deformation spaces associated to compact hyperbolic manifolds. In: Discrete subgroups ... . Progress in Mathematics, vol. 67, pp. 48–106. Birkhäuser 1984Google Scholar
  13. 13.
    Kac, V., Vinberg, E.: Quasihomogeneous cones. Math. Notes 1, 231–235 (1967)Google Scholar
  14. 14.
    Kapovich, M.: Hyperbolic manifolds and discrete groups. Progress in Mathematics, vol. 183. Birkhäuser 2001Google Scholar
  15. 15.
    Koszul, J.L.: Déformation des connexions localement plates. Ann. Inst. Fourier 18, 103–114 (1968)MATHMathSciNetGoogle Scholar
  16. 16.
    Morgan, J., Shalen, P.: Degenerations of hyperbolic structures III. Ann. Math. 127, 457–519 (1988)CrossRefMATHGoogle Scholar
  17. 17.
    Paulin, F.: Actions de groupes sur les arbres. Sém. Bourbaki 808. Astérisque 241, 97–137 (1997)Google Scholar
  18. 18.
    Plante, J.F.: Foliations with measure preserving holonomy. Ann. Math. 102, 327–361 (1975)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Raghunathan, M.: Discrete subgroups of Lie groups. Springer 1972Google Scholar
  20. 20.
    Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983)MATHGoogle Scholar
  21. 21.
    Thurston, W.: Geometry and topology of 3-manifolds, Lecture Notes (1978–81) available at www.msri.org/publications/books/gt3mGoogle Scholar
  22. 22.
    Thurston, W.: Three dimensional manifolds, kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc. 6, 357–381 (1982)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Thurston, W.: Three dimensional geometry and topology. Princeton Math. Ser., vol. 35. Princeton Univ. Press 1997Google Scholar
  24. 24.
    Vey, J.: Sur les automorphismes affines des ouverts convexes saillants. Ann. Sc. Norm. Super. Pisa 24, 641–665 (1970)MATHMathSciNetGoogle Scholar
  25. 25.
    Vinberg, E.: Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR 35, 1072–1112 (1971)MATHMathSciNetGoogle Scholar
  26. 26.
    Vinberg, E.: Geometry II. Encyclopedia of Math. Sc. 29. Springer 1993Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Ecole Normale Supérieure-CNRSParisFrance

Personalised recommendations