Inventiones mathematicae

, Volume 164, Issue 1, pp 143–173 | Cite as

The obstruction to excision in K-theory and in cyclic homology



Let f:AB be a ring homomorphism of not necessarily unital rings and \(I\triangleleft{A}\) an ideal which is mapped by f isomorphically to an ideal of B. The obstruction to excision in K-theory is the failure of the map between relative K-groups K *(A:I)→K *(B:f(I)) to be an isomorphism; it is measured by the birelative groups K *(A,B:I). Similarly the groups HN *(A,B:I) measure the obstruction to excision in negative cyclic homology. We show that the rational Jones-Goodwillie Chern character induces an isomorphism


Ring Homomorphism Unital Ring Chern Character Cyclic Homology Negative Cyclic Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin, M., Mazur, B.: Etale homotopy. Lect. Notes Math., vol. 100. Springer 1969Google Scholar
  2. 2.
    Bass, H.: Algebraic K-theory. New York, Amsterdam: W. A. Benjamin 1968Google Scholar
  3. 3.
    Bousfield, A.K., Kan, D.: Homotopy limits, completions and localizations. Lect. Notes Math., vol. 304. Springer 1972Google Scholar
  4. 4.
    Cortiñas, G.: On the derived functor analogy in the Cuntz-Quillen framework for cyclic homology. Algebra Colloq. 5, 305–328 (1998)MATHMathSciNetGoogle Scholar
  5. 5.
    Cortiñas, G.: Infinitesimal K-theory. J. Reine Angew. Math. 503, 129–160 (1998)MATHMathSciNetGoogle Scholar
  6. 6.
    Cortiñas, G.: Periodic cyclic homology as sheaf cohomology. K-Theory 20, 175–200 (2000)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cortiñas, G.: Cyclic homology of H-unital (pro-)algebras, Lie algebra homology of matrices and a paper of Hanlon’s. Preprint, available at Scholar
  8. 8.
    Cortiñas, G., Valqui, C.: Excision in bivariant periodic cyclic cohomology: a categorical approach. K-Theory 30, 167–201 (2003)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cuntz, J., Quillen, D.: Excision in periodic bivariant cyclic cohomology. Invent. Math. 127, 67–98 (1997)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Geller, S., Reid, L., Weibel, C.: The cyclic homology and K-theory of curves. J. Reine Angew. Math. 393, 39–80 (1989)MATHMathSciNetGoogle Scholar
  11. 11.
    Geller, S., Weibel, C.: K 1(A,B,I). J. Reine Angew. Math. 342, 12–34 (1983)MATHMathSciNetGoogle Scholar
  12. 12.
    Geller, S., Weibel, C.: K(A,B,I) II. K-Theory 2, 753–760 (1989)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Geller, S., Weibel, C.: Hodge decompostion of Loday symbols in K-theory and cyclic homology. K-Theory 8, 587–632 (1994)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Gersten, S.M.: On the spectrum of algebraic K-theory. Bull. Am. Math. Soc. 78, 216–220 (1972)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Guccione, J.A., Guccione, J.J.: The theorem of excision for Hochschild and cyclic homology. J. Pure Appl. Algebra 106, 57–60 (1996)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Goodwillie, T.: Cyclic homology, derivations, and the free loopspace. Topology 24, 187–215 (1985)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Goodwillie, T.: Relative algebraic K-theory and cyclic homology. Ann. Math. 124, 347–402 (1986)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Guin-Waléry, D., Loday, J.L.: Obstruction à l’excision en K-thèorie algebrique. Lect. Notes Math., vol. 854, pp. 179–216. Springer 1981Google Scholar
  19. 19.
    Karoubi, M., Villamayor, O.E.: K-thèorie algebrique et K-thèorie topologique I. Math. Scand. 28, 265–307 (1971)MATHMathSciNetGoogle Scholar
  20. 20.
    Keune, F.: Doubly relative K-theory and the relative K 3. J. Pure Appl. Algebra 20, 39–53 (1981)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Loday, J.L.: Cyclic homology. 1st ed. Grundlehren Math. Wiss., vol. 301. Berlin, Heidelberg: Springer 1998Google Scholar
  22. 22.
    May, J.P.: Simplicial objects in algebraic topology. Chicago Lect. Notes Math. Chicago, London: Univ. of Chicago Press 1976Google Scholar
  23. 23.
    Ogle, C., Weibel, C.: Relative K-theory and cyclic homology. PreprintGoogle Scholar
  24. 24.
    Suslin, A., Wodzicki, M.: Excision in algebraic K-theory. Ann. Math. 136, 51–122 (1992)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Thomason, R.W.: Algebraic K-theory and étale cohomology. Ann. Sci. Éc. Norm. Supér., IV. Sér. 18, 437–552 (1980)Google Scholar
  26. 26.
    Weibel, C.: Mayer-Vietoris sequences and mod p K-theory. Lect. Notes Math., vol. 966, pp. 390–406. Springer 1982Google Scholar
  27. 27.
    Valqui, C.: Weak equivalence of pro-complexes and excision in topological Cuntz-Quillen theory. Preprint SFB 478, Heft 88. Available from Scholar
  28. 28.
    Wodzicki, M.: Excision in cyclic homology and in rational algebraic K-theory. Ann. Math. 129, 591–639 (1989)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Zeeman, E.C.: A proof of the comparison theorem for spectral sequences. Proc. Camb. Philos. Soc. 53, 57–62 (1957)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Departamento de MatemáticaCiudad Universitaria Pab 1Buenos AiresArgentina

Personalised recommendations