Inventiones mathematicae

, 163:343 | Cite as

Moment analysis for localization in random Schrödinger operators

  • Michael AizenmanEmail author
  • Alexander ElgartEmail author
  • Serguei NabokoEmail author
  • Jeffrey H. SchenkerEmail author
  • Gunter StolzEmail author


We study localization effects of disorder on the spectral and dynamical properties of Schrödinger operators with random potentials. The new results include exponentially decaying bounds on the transition amplitude and related projection kernels, including in the mean. These are derived through the analysis of fractional moments of the resolvent, which are finite due to the resonance-diffusing effects of the disorder. The main difficulty which has up to now prevented an extension of this method to the continuum can be traced to the lack of a uniform bound on the Lifshitz-Krein spectral shift associated with the local potential terms. The difficulty is avoided here through the use of a weak-L 1 estimate concerning the boundary-value distribution of resolvents of maximally dissipative operators, combined with standard tools of relative compactness theory.


Relative Compactness Dynamical Property Transition Amplitude Localization Effect Main Difficulty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abraham, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)CrossRefGoogle Scholar
  2. 2.
    Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6, 1163–1182 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A 31, 6783–6806 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36, 107–143 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Aizenman, M., Schenker, J.H., Friedrich, R.M., Hundertmark, D.: Finite volume fractional moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Aizenman, M., Simon, B.: Local Ward identities and the decay of correlations in ferromagnets. Commun. Math. Phys. 77, 137–143 (1980)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)CrossRefGoogle Scholar
  9. 9.
    Asano, K.: Notes on Hilbert transforms of vector valued functions in the complex plane and their boundary values. Proc. Japan Acad. 43, 572–577 (1967)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Avron, J.E., Seiler, R., Simon, B.: Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Barbaroux, J.-M., Combes, J.-M., Hislop, P.D.: Localization near band edges for random Schrödinger operators. Helv. Phys. Acta 70, 16–43 (1997)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Berthier, A.M.: Sur le spectre ponctuel de l’opérateur de Schrödinger. C. R. Acad. Sci., Paris, Sér. A-B 290, A393–395 (1980)Google Scholar
  14. 14.
    Birman, M.Š.: On the number of eigenvalues in a quantum scattering problem. Vestn. Leningrad Univ. 16, 163–166 (1961)MathSciNetGoogle Scholar
  15. 15.
    Birman, M.Š, Entina, S.B.: Stationary approach in abstract scattering theory. Izv. Akad. Nauk SSSR, Ser. Mat. 31, 401–430 (1967)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Boole, G.: On the comparison of transcendents, with certain applications to the theory of definite integrals. Philos. Trans. R. Soc. 147, 745–803 (1857)Google Scholar
  17. 17.
    Boutet de Monvel, A., Naboko, S., Stollmann, P., Stolz, G.: Localization for continuum random surfaces via fractional moments. In preparationGoogle Scholar
  18. 18.
    Combes, J.-M., Hislop, P.D.: Localization for some continuous, random Hamiltonians in d-dimensions. J. Funct. Anal. 124, 149–180 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Combes, J.-M., Hislop, P.D., Nakamura, S.: The L p-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random operators. Commun. Math. Phys. 218, 113–130 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Combes, J.-M., Thomas, L.: Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Commun. Math. Phys. 34, 251–270 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics, study edition. Berlin: Springer 1987Google Scholar
  22. 22.
    Davies, E.B.: Spectral theory and differential operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge: Cambridge University Press 1995Google Scholar
  23. 23.
    De Bièvre, S., Pulé J.V.: Propagating edge states for a magnetic hamiltonian. Math. Phys. Electron. J. 5, paper 3 (1999)Google Scholar
  24. 24.
    de Branges, L.: Perturbations of self-adjoint transformations. Am. J. Math. 84, 543–560 (1962)zbMATHGoogle Scholar
  25. 25.
    Delyon, F., Levy, Y., Souillard, B.: Anderson localization for multidimensional systems at large disorder or low energy. Commun. Math. Phys. 100, 463–470 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Dobrushin, R.L., Shlosman, S.B.: Completely analytical interactions: constructive description. J. Stat. Phys. 46, 983–1014 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Dorlas, T.C., Macris, N., Pulé, J.V.: Characterization of the spectrum of the Landau Hamiltonian with delta impurities. Commun. Math. Phys. 204, 367–396 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Fröhlich, J., Graf, G.M., Walcher, J.: On the extended nature of edge states of quantum hall hamiltonians. Ann. Inst. Henry Poincaré 1, 405–444 (2000)zbMATHGoogle Scholar
  29. 29.
    Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101, 21–46 (1985)CrossRefzbMATHGoogle Scholar
  30. 30.
    Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)CrossRefzbMATHGoogle Scholar
  31. 31.
    Garnett, J.B.: Bounded analytic functions. New York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 1981Google Scholar
  32. 32.
    Germinet, F., Klein, A.: Bootstrap multiscale analysis and localization in random media. Commun. Math. Phys. 222, 415–448 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Germinet, F., Klein, A.: A characterization of the Anderson metal-insulator transition. Duke Math. J. 124, 309–359 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Goldsheid, I.Ya., Molchanov, S.A., Pastur, L.A.: Typical one-dimensional Schrödinger operator has pure point spectrum. Funkts. Anal. Prilozh. 11, 1–10 (1977)zbMATHCrossRefGoogle Scholar
  35. 35.
    Graf, G.-M.: Anderson localization and the space-time characteristic of continuum states. J. Stat. Phys. 75, 337 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Halperin, B.I.: Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, Condens. Matter 25, 2185–2190 (1982)Google Scholar
  37. 37.
    Hammersley, J.M.: Percolation processes. II. The connective constant. Proc. Cambridge Philos. Soc. 53, 642–645 (1957)zbMATHMathSciNetGoogle Scholar
  38. 38.
    Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et équation de Harper. In: Schrödinger operators (Sønderborg, 1988), Lect. Notes Phys., vol. 345, pp. 118–197. Berlin: Springer 1989Google Scholar
  39. 39.
    Hislop, P.D., Kirsch, W., Krishna, M.: Spectral and dynamical properties of random models with nonlocal and singular interactions. Math. Nachr. 278, 627–664 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Hundertmark, D., Simon, B.: An optimal L p-bound on the Krein spectral shift function. J. Anal. Math. 87, 199–208 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E.M. Stein. Ann. Math. (2) 121, 463–494 (1985)Google Scholar
  42. 42.
    Kalf, H.: Une remarque au sujet de prolongement unique des solutions de l’équation de Schrödinger. C. R. Acad. Sci. Paris, Sér. I, Math. 295, 579–581 (1982)zbMATHMathSciNetGoogle Scholar
  43. 43.
    Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer 1995. Reprint of the 1980 editionGoogle Scholar
  44. 44.
    Kirsch, W.: Small perturbations and the eigenvalues of the Laplacian on large bounded domains. Proc. Am. Math. Soc. 101, 509–512 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Kirsch, W.: Wegner estimates and Anderson localization for alloy-type potentials. Math. Z. 221, 507–512 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Kirsch, W., Stollmann, P., Stolz, G.: Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stoch. Equ. 6, 241–268 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Klopp, F.: Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Math. J. 98, 335–396 (1999)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Klopp, F.: Internal Lifshitz tails for Schrödinger operators with random potentials. J. Math. Phys. 43, 2948–2958 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Koch, H., Tataru, D.: Recent results on unique continuation for second order elliptic equations. In: Carleman estimates and applications to uniqueness and control theory (Cortona, 1999). Progr. Nonlinear Differential Equations Appl., vol. 46, pp. 73–84. Boston, MA: Birkhäuser 2001Google Scholar
  50. 50.
    Kotani, S., Simon, B.: Localization in general one-dimensional random systems, II. Continuum Schrödinger operators. Commun. Math. Phys. 112, 103–119 (1987)zbMATHMathSciNetGoogle Scholar
  51. 51.
    Leinfelder, H., Simader, C.G.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Lieb, E.H.: A refinement of Simon’s correlation inequality. Commun. Math. Phys. 77, 127–135 (1980)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Lifshitz, I.M.: Energy spectrum structure and quantum states of disordered condensed systems. Sov. Phys. Usp. 7, 549–573 (1965)CrossRefMathSciNetGoogle Scholar
  54. 54.
    Martinelli, F., Scoppola, E.: Introduction to the mathematical theory of Anderson localization. Riv. Nuovo Cimento (3) 10, 1–90 (1987)Google Scholar
  55. 55.
    Mott, N., Twose, W.: The theory of impurity conduction. Adv. Phys. 10, 107–163 (1961)CrossRefGoogle Scholar
  56. 56.
    Naboko, S.N.: The structure of singularities of operator functions with a positive imaginary part. Funkts. Anal. Prilozh. 25, 1–13, 96 (1991)zbMATHMathSciNetGoogle Scholar
  57. 57.
    Niu, Q., Thouless, D.J., Wu, Y.S.: Quantized Hall conductance as a topological invariant. Phys. Rev. B (3) 31, 3372–3377 (1985)Google Scholar
  58. 58.
    Pastur, L., Figotin, A.: Spectra of random and almost-periodic operators. Berlin: Springer 1992Google Scholar
  59. 59.
    Pavlov, B.S.: Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model [MR 93c:47057]. In: Partial differential equations, VIII, pp. 87–153. Berlin: Springer 1996Google Scholar
  60. 60.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers] 1978Google Scholar
  61. 61.
    Rudin, W.: Real and complex analysis, third edition. New York: McGraw-Hill Book Co. 1987Google Scholar
  62. 62.
    Schwartz, J.: A remark on inequalities of Calderon-Zygmund type for vector-valued functions. Commun. Pure Appl. Math. 14, 785–799 (1961)zbMATHGoogle Scholar
  63. 63.
    Schwinger, J.: On the bound states of a given potential. Proc. Natl. Acad. Sci. USA 47, 122–129 (1961)MathSciNetGoogle Scholar
  64. 64.
    Simon, B.: Functional Integration and Quantum Physics. New York: Academic Press 1979Google Scholar
  65. 65.
    Simon, B.: Trace ideals and their applications. Lond. Math. Soc. Lect. Note Ser., vol. 35. Cambridge: Cambridge University Press 1979Google Scholar
  66. 66.
    Simon, B.: Correlation inequalities and the decay of correlations in ferromagnets. Commun. Math. Phys. 77, 111–126 (1980)CrossRefGoogle Scholar
  67. 67.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc., New Ser. 7, 447–526 (1982)zbMATHCrossRefGoogle Scholar
  68. 68.
    Simon, B.: Cyclic vectors in the Anderson model. Rev. Math. Phys. 6, 1183–1185 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    Simon, B., Wolff, T.: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Commun. Pure Appl. Math. 39, 75–90 (1986)zbMATHGoogle Scholar
  70. 70.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press 1970Google Scholar
  71. 71.
    Stollmann, P.: Caught by disorder: bound states in random media. Progress in Mathematical Physics, vol. 20. Boston, MA: Birkhäuser 2001Google Scholar
  72. 72.
    Sz.-Nagy, B., Foias, C.: Harmonic analysis of operators on Hilbert space. Amsterdam: North-Holland Publishing Co. 1970Google Scholar
  73. 73.
    Thouless, D.J.: Electrons in disordered systems and the theory of localization. Phys. Rep. 13, 93–142 (1974)CrossRefGoogle Scholar
  74. 74.
    von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285–299 (1989)CrossRefzbMATHGoogle Scholar
  75. 75.
    Wolff, T.H.: Unique continuation for |Δu| ≤ V|∇u| and related problems. Rev. Mat. Iberoam. 6, 155–200 (1990)zbMATHMathSciNetGoogle Scholar
  76. 76.
    Wolff, T.H.: A property of measures in R N and an application to unique continuation. Geom. Funct. Anal. 2, 225–284 (1992)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsStanford UniversityUSA
  3. 3.Department of MathematicsSt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Theoretische PhysikETH ZürichZürichSwitzerland
  5. 5.Department of MathematicsUniversity of AlabamaBirminghamUSA

Personalised recommendations