Inventiones mathematicae

, Volume 163, Issue 2, pp 313–342 | Cite as

The Dehn function of Richard Thompson’s group F is quadratic

  • V.S. GubaEmail author


We prove that the Dehn function (that is, the smallest isoperimetric function) of the R. Thompson’s group F is quadratic.


Dehn Function Isoperimetric Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumslag, G., Miller, C.F., Short, H.: Isoperimetric inequalities and the homology of groups. Invent. Math. 113, 531–560 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Brin, M.G., Squier, C.C.: Groups of piecewise linear homeomorphisms of the real line. Invent. Math. 79, 485–498 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brown, K.S.: Finiteness properties of groups. J. Pure Appl. Algebra 44, 45–75 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brown, K.S., Geoghegan, R.: An infinite-dimensional torsion-free FP group. Invent. Math. 77, 367–381 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word processing in groups. Boston, London: Jones and Barlett 1992Google Scholar
  6. 6.
    Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math., II Sér. 42, 215–256 (1996)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical Computer Science, ed. by J. van Leeuwen, Chap. 6, pp. 244–320. Elsevier Science Publishers B.V. 1990Google Scholar
  8. 8.
    Gersten, S.: Isoperimetric and isodiametric functions of finite presentations. In: Geometric group theory, Vol. 1 (Sussex 1991). Lond. Math. Soc. Lect. Note Ser. 181, 79–96 (1993)Google Scholar
  9. 9.
    Gersten, S.: Thompson’s group F is not combable. UnpublishedGoogle Scholar
  10. 10.
    Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, ed. by S. Gersten, MSRI Publ., Vol. 8, pp. 75–263. Springer 1987Google Scholar
  11. 11.
    Guba, V.S.: Polynomial upper bounds for the Dehn function of R. Thompson’s group F. J. Group Theory 1, 203–211 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Guba, V.S.: Polynomial Isoperimetric Inequalities for Richard Thompson’s Groups F, T, and V. In: Algorithmic Problems in Groups and Semigroups, ed. by J.-C. Birget et al., pp. 91–120. Boston, Basel, Berlin: Birkhäuser 2000Google Scholar
  13. 13.
    Guba, V.S., Sapir, M.V.: Diagram groups. Mem. Am. Math. Soc. 130, 1–117 (1997)MathSciNetGoogle Scholar
  14. 14.
    Guba, V.S., Sapir, M.V.: The Dehn function and a regular set of normal forms for R. Thompson’s group F. J. Aust. Math. Soc., Ser. A 62, 315–328 (1997)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Lyndon, R., Schupp, P.: Combinatorial group theory. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  16. 16.
    Madlener, K., Otto, F.: Pseudo-natural algorithms for the word problem for finitely presented monoids and groups. J. Symb. Comput. 1, 383–418 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Papasoglu, P.: On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality. J. Differ. Geom. 44, 789–806 (1996)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Vologda State Pedagogical UniversityVologdaRussia

Personalised recommendations