Inventiones mathematicae

, Volume 163, Issue 2, pp 229–288 | Cite as

CM-values of Hilbert modular functions

  • Jan Hendrik Bruinier
  • Tonghai Yang


Modular Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.: Pocketbook of Mathematical Functions. Harri Deutsch 1984Google Scholar
  2. 2.
    Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132, 491–562 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Borcherds, R.E.: The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97, 219–233 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bruinier, J.H.: Borcherds products and Chern classes of Hirzebruch-Zagier divisors. Invent. Math. 138, 51–83 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bruinier, J.H.: Borcherds products on O(2,l) and Chern classes of Heegner divisors. Lect. Notes Math., vol. 1780. Springer 2002Google Scholar
  6. 6.
    Bruinier, J.H.: Infinite products in number theory and geometry. Jahresber. Dtsch. Math.-Ver. 106, 151–184 (2004)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bruinier, J.H., Bundschuh, M.: On Borcherds products associated with lattices of prime discriminant. Ramanujan J. 7, 49–61 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bruinier, J.H., Burgos, J., Kühn, U.: Borcherds products and arithmetic intersection theory on Hilbert modular surfaces. Preprint 2003 Scholar
  9. 9.
    Bruinier, J.H., Kühn, U.: Integrals of automorphic Green’s functions associated to Heegner divisors. Int. Math. Res. Not. 2003:31, 1687–1729 (2003)Google Scholar
  10. 10.
    Cohn, H.: A Classical Invitation to Algebraic Numbers and Class fields. New York: Springer 1978Google Scholar
  11. 11.
    Conner, P.E., Hurrelbrink, J.: Class Number Parity. Ser. Pure Math., vol. 8. World Scientific 1988Google Scholar
  12. 12.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. I. McGraw-Hill 1954Google Scholar
  13. 13.
    Franke, H.-G.: Kurven in Hilbertschen Modulflächen und Humbertsche Flächen im Siegelraum. Bonn. Math. Schr. 104 (1978)Google Scholar
  14. 14.
    van der Geer, G.: Hilbert Modular Surfaces. Springer 1988Google Scholar
  15. 15.
    Goren, E.Z.: Lectures on Hilbert Modular Varieties and Modular Forms. CRM Monogr. Ser., vol. 14. American Mathematical Society 2002Google Scholar
  16. 16.
    Goren, E.Z., Lauter, K.: Class invariants for quartic CM fields, 14 pp. Preprint (2004)Google Scholar
  17. 17.
    Gritsenko, V.A., Nikulin, V.V.: Automorphic forms and Lorentzian Kac-Moody algebras. II. Int. J. Math. 9, 201–275 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gross, B., Zagier, D.: On singular moduli. J. Reine Angew. Math. 355, 191–220 (1985)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Gundlach, K.-B.: Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers ℚ(√5). Math. Ann. 152, 226–256 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Hecke, E.: Analytische Arithmetik der positiv definiten quadratischen Formen. Kgl. Danske Vid. Selskab. Math. fys. Med. XIII 12, Werke, 789–918 (1940)Google Scholar
  22. 22.
    Hejhal, D.A.: The Selberg Trace Formula for PSL(2,ℝ). Lect. Notes Math., vol. 1001. Springer 1983Google Scholar
  23. 23.
    Hirzebruch, F., Zagier, D.: Intersection Numbers of Curves on Hilbert Modular Surfaces and Modular Forms of Nebentypus. Invent. Math. 36, 57–113 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kudla, S.: Central derivatives of Eisenstein series and height pairings. Ann. Math. 146, 545–646 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Kudla, S.: Integrals of Borcherds forms. Compos. Math. 137, 293–349 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kudla, S., Rapoport, M., Yang, T.H.: On the derivative of an Eisenstein series of weight one. Int. Math. Res. Not. 7, 347–385 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Kudla, S., Rapoport, M., Yang, T.: Derivatives of Eisenstein series and Faltings heights. Compos. Math. 140, 887–951 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lauter, K.: Primes in the denominators of Igusa Class Polynomials. Preprint 2003, 3 pp. Scholar
  29. 29.
    Naganuma, H.: On the coincidence of two Dirichlet series associated with cusp forms of Hecke’s “Neben”-type and Hilbert modular forms over a real quadratic field. J. Math. Soc. Japan 25, 547–555 (1973)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Schofer, J.: Thesis. University of Maryland 2005Google Scholar
  31. 31.
    Runge, B.: Endomorphism rings of abelian surfaces and projective models of their moduli spaces. Tohoku Math. J. 51, 283–303 (1999)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Shimura, G.: Abelian varieties with complex multiplication and modular functions. Princeton Univ. Press 1998Google Scholar
  33. 33.
    Sturm, J.: Projections of C automorphic forms. Bull. Am. Math. Soc. 2, 435–439 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Yang, T.H.: CM number fields and modular forms. Quart. J. Pure Appl. Math. 1, 65–100 (2005)Google Scholar
  35. 35.
    Yang, T.H.: Local densities of 2-adic quadratic forms. J. Number Theory 108, 287–345 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Zagier, D.: Modular Forms Associated to Real Quadratic Fields. Invent. Math. 30, 1–46 (1975)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Department of MathematicsUniversity of Wisconsin MadisonMadisonUSA

Personalised recommendations