Inventiones mathematicae

, Volume 162, Issue 3, pp 493–521 | Cite as

Donaldson theory on non-Kählerian surfaces and class VII surfaces with b2=1

  • Andrei TelemanEmail author


We prove that any class VII surface with b2=1 has curves. This implies the “Global Spherical Shell conjecture” in the case b2=1:

Any minimal class VII surface withb2=1 admits a global spherical shell, hence it is isomorphic to one of the surfaces in the known list.

By the results in [LYZ], [Te1], which treat the case b2=0 and give complete proofs of Bogomolov’s theorem, one has a complete classification of all class VII-surfaces with b2∈{0,1}.

The main idea of the proof is to show that a certain moduli space of PU(2)-instantons on a surface X with no curves (if such a surface existed) would contain a closed Riemann surface Y whose general points correspond to non-filtrable holomorphic bundles on X. Then we pass from a family of bundles on X parameterized by Y to a family of bundles on Y parameterized by X, and we use the algebraicity of Y to obtain a contradiction.

The proof uses essentially techniques from Donaldson theory: compactness theorems for moduli spaces of PU(2)-instantons and the Kobayashi-Hitchin correspondence on surfaces.


Modulus Space Main Idea Riemann Surface General Point Spherical Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlet, D.: Majoration du volume des fibres génériques et formes géométriques du théorème d’aplatissement. Séminaire Pierre Lelong-Henri Skoda (Analyse). Lect. Notes Math., vol. 822, pp. 1–17. Springer 1980Google Scholar
  2. 2.
    Barlet, D.: How to use the cycle cpace in complex geometry. Several Complex Variables MSRI Publications, vol. 37, pp. 25–42, 1999Google Scholar
  3. 3.
    Bănică, C., Le Potier, J.: Sur l’existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques. J. Reine Angew. Math. 378, 1–31 (1987)Google Scholar
  4. 4.
    Barth, W., Hulek, K., Peters, Ch., Van de Ven, A.: Compact complex surfaces. Springer 2004Google Scholar
  5. 5.
    Bogomolov, F.: Classification of surfaces of class VII0 with b2=0. Math. USSR Izv. 10, 255–269 (1976)CrossRefGoogle Scholar
  6. 6.
    Bogomolov, F.: Surfaces of class VII0 and affine geometry. Math. USSR Izv. 21, 31–73 (1983)CrossRefGoogle Scholar
  7. 7.
    Buchdahl, N.: Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280, 625–648 (1988)CrossRefGoogle Scholar
  8. 8.
    Buchdahl, N.: A Nakai-Moishezon criterion for non-Kahler surfaces. Ann. Inst. Fourier 50, 1533–1538 (2000)Google Scholar
  9. 9.
    Dloussky, G., Oeljeklaus, K., Toma, M.: Class VII0 surfaces with b2 curves. Tohoku Math. J., II. Ser. 55, 283–309 (2003)Google Scholar
  10. 10.
    Donaldson, S. K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 50, 1–26 (1985)Google Scholar
  11. 11.
    Donaldson, S., Kronheimer, P.: The Geometry of Four-Manifolds. Oxford Univ. Press 1990Google Scholar
  12. 12.
    Gauduchon, P.: Sur la 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)CrossRefGoogle Scholar
  13. 13.
    Kobayashi, S.: Differential geometry of complex vector bundles. Princeton Univ. Press 1987Google Scholar
  14. 14.
    Lübke, M., Okonek, C.: Moduli spaces of simple bundles and Hermitian-Einstein connections. Math. Ann. 276, 663–674 (1987)CrossRefGoogle Scholar
  15. 15.
    Lübke, M., Teleman, A.: The Kobayashi-Hitchin correspondence. World Scientific Publishing Co. 1995Google Scholar
  16. 16.
    Lübke, M., Teleman, A.: The universal Kobayashi-Hitchin correspondence on Hermitian surfaces. math.DG/0402341, to appear in Mem. Am. Math. Soc.Google Scholar
  17. 17.
    Li, J., Yau, S.T.: Hermitian Yang-Mills connections on non-Kähler manifolds, Math. aspects of string theory (San Diego, CA 1986). Adv. Ser. Math. Phys. 1, pp. 560–573. World Scientific Publishing 1987Google Scholar
  18. 18.
    Li, J., Yau, S.T., Zheng, F.: On projectively flat Hermitian manifolds. Commun. Anal. Geom. 2, 103–109 (1994)Google Scholar
  19. 19.
    Miyajima, K.: Kuranishi families of vector bundles and algebraic description of the moduli space of Einstein-Hermitian connections. Publ. Res. Inst. Math. Sci. 25, 301–320 (1989)Google Scholar
  20. 20.
    Nakamura, I.: On surfaces of class VII0 with curves. Invent. Math. 78, 393–443 (1984)CrossRefGoogle Scholar
  21. 21.
    Newstead, P.E.: Introduction to moduli problems and orbit spaces. Tata Institute of Fundamental Research on Mathematics and Physics 51. New Delhi: Tata Institute of Fundamental Research 1978Google Scholar
  22. 22.
    Teleman, A.: Projectively flat surfaces and Bogomolov’s theorem on class VII0-surfaces. Int. J. Math. 5, 253–264 (1994)CrossRefGoogle Scholar
  23. 23.
    Teleman, A.: Instantons on class VII surfaces. In preparationGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.LATP, CMIUniversité de ProvenceMarseille Cedex 13France

Personalised recommendations