Inventiones mathematicae

, Volume 162, Issue 2, pp 381–457 | Cite as

A proof of Price’s law for the collapse of a self-gravitating scalar field

Article

Abstract

A well-known open problem in general relativity, dating back to 1972, has been to prove Price’s law for an appropriate model of gravitational collapse. This law postulates inverse-power decay rates for the gravitational radiation flux through the event horizon and null infinity with respect to appropriately normalized advanced and retarded time coordinates. It is intimately related both to astrophysical observations of black holes and to the fate of observers who dare cross the event horizon. In this paper, we prove a well-defined (upper bound) formulation of Price’s law for the collapse of a self-gravitating scalar field with spherically symmetric initial data. We also allow the presence of an additional gravitationally coupled Maxwell field. Our results are obtained by a new mathematical technique for understanding the long-time behavior of large data solutions to the resulting coupled non-linear hyperbolic system of p.d.e.’s in 2 independent variables. The technique is based on the interaction of the conformal geometry, the celebrated red-shift effect, and local energy conservation; we feel it may be relevant for the problem of non-linear stability of the Kerr solution. When combined with previous work of the first author concerning the internal structure of charged black holes, which had assumed the validity of Price’s law, our results can be applied to the strong cosmic censorship conjecture for the Einstein-Maxwell-real scalar field system with complete spacelike asymptotically flat spherically symmetric initial data. Under Christodoulou’s C0-formulation, the conjecture is proven to be false.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barack, L.: Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry. Phys. Rev. D 59 (1999)Google Scholar
  2. 2.
    Barack, L., Ori, A.: Late-time decay of scalar perturbations outside rotating black holes. Phys. Rev. Lett. 82, 4388–4391 (1999)CrossRefGoogle Scholar
  3. 3.
    Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian geometry. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202. New York: Marcel Dekker, Inc. 1996Google Scholar
  4. 4.
    Bicak, J.: Gravitational collapse with charge and small asymmetries I. Scalar perturbations. Gen. Relativ. Gravitation 3, 331–349 (1972)CrossRefGoogle Scholar
  5. 5.
    Bonanno, A., Droz, S., Israel, W., Morsink, S.M.: Structure of the charged black hole interior. Proc. R. Soc. Lond., Ser. A 450, 553–567 (1995)Google Scholar
  6. 6.
    Brady, P., Smith, J.: Black hole singularities: a numerical approach. Phys. Rev. Lett. 75, 1256–1259 (1995)CrossRefPubMedGoogle Scholar
  7. 7.
    Burko, L., Ori, A.: Late-time evolution of non-linear gravitational collapse. Phys. Rev. D 56, 7828–7832 (1997)CrossRefGoogle Scholar
  8. 8.
    Chae, D.: Global existence of solutions to the coupled Einstein and Maxwell-Higgs system in the spherical symmetry. Ann. Inst. Henri Poincaré 4, 35–62 (2003)CrossRefGoogle Scholar
  9. 9.
    Chandrasekhar, S., Hartle, J.B.: On crossing the Cauchy horizon of a Reissner-Nordström black-hole. Proc. R. Soc. Lond., Ser. A 384, 301–315 (1982)Google Scholar
  10. 10.
    Ching, E.S.C., Leung, P.T., Suen, W.M., Young, K.: Wave propagation in gravitational systems. Phys. Rev. D 52 (1995)Google Scholar
  11. 11.
    Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)CrossRefGoogle Scholar
  12. 12.
    Christodoulou, D.: The global initial value problem in general relativity. Proceedings of the Marcel Grossman Meeting, RomeGoogle Scholar
  13. 13.
    Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)Google Scholar
  14. 14.
    Christodoulou, D.: A mathematical theory of gravitational collapse. Commun. Math. Phys. 109, 613–647 (1987)CrossRefGoogle Scholar
  15. 15.
    Christodoulou, D.: On the global initial value problem and the issue of singularities. Classical Quantum Gravity 16, A23–A35 (1999)Google Scholar
  16. 16.
    Christodoulou, D.: Self-gravitating relativistic fluids: a two-phase model. Arch. Ration. Mech. Anal. 130, 343–400 (1995)CrossRefGoogle Scholar
  17. 17.
    Christodoulou, D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Commun. Pure Appl. Math. 46, 1131–1220 (1992)Google Scholar
  18. 18.
    Christodoulou, D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Commun. Pure Appl. Math. 44, 339–373 (1991)Google Scholar
  19. 19.
    Christodoulou, D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105, 337–361 (1986)CrossRefGoogle Scholar
  20. 20.
    Christodoulou, D., Tahvildar-Zadeh, A.S.: On the regularity of spherically symmetric wave maps. Commun. Pure Appl. Math 46, 1041–1091 (1993)Google Scholar
  21. 21.
    Chruściel, P.: On the uniqueness in the large of solutions of the Einstein’s equations (“strong cosmic censorship”). Canberra: Australian National University, Centre for Mathematics and its Applications 1991Google Scholar
  22. 22.
    Dafermos, M.: Stability and instability of the Cauchy horizon for the spherically-symmetric Einstein-Maxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)Google Scholar
  23. 23.
    Dafermos, M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. 58, 445–504 (2005)CrossRefGoogle Scholar
  24. 24.
    Dafermos, M.: Stability and instability of the Reissner-Nordström Cauchy horizon and the problem of uniqueness in general relativity. gr-qc/0209052, “Proceedings of the Conference on Non-compact Variational Problems and General Relativity in honor of Haim Brezis and Felix Browder”. Contemp. Math. 350, 99–113 (2004)Google Scholar
  25. 25.
    Dafermos, M.: Spherically symmetric spacetimes with a trapped surface. Class. Quantum Grav. 22, 2221–2232 (2005)CrossRefGoogle Scholar
  26. 26.
    Dafermos, M.: Price’s law, mass inflation, and strong cosmic censorship. In: Relativity Today. Proceedings of the Seventh Hungarian Relativity Workshop, ed. by I. Rácz. Budapest: Akadémiai Kiadó 2004Google Scholar
  27. 27.
    Gundlach, C., Price, R.H., Pullin, J.: Late-time behavior of stellar collapse and explosions. I. Linearized perturbations. Phys. Rev. D 49, 883–889 (1994)CrossRefGoogle Scholar
  28. 28.
    Gundlach, C., Price, R.H., Pullin, J.: Late-time behavior of stellar collapse and explosions. II. Nonlinear evolution Phys. Rev. D 49 (1994), 890–899Google Scholar
  29. 29.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. London, New York: Cambridge University Press 1973Google Scholar
  30. 30.
    Kay, B., Wald, R.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere. Classical Quantum Gravity 4, 893–898 (1987)CrossRefGoogle Scholar
  31. 31.
    Machedon, M., Stalker, J.: Decay of solutions to the wave equation on a spherically symmetric background. PreprintGoogle Scholar
  32. 32.
    Marsa, R.L., Choptuik, M.W.: Black-hole–scalar-field interactions in spherical symmetry. Phys. Rev. D 54, 4929–4943 (1996)CrossRefGoogle Scholar
  33. 33.
    Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)CrossRefGoogle Scholar
  34. 34.
    Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D (3) 41, 1796–1809 (1990)Google Scholar
  35. 35.
    Price, R.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D (3) 5, 2419–2438 (1972)Google Scholar
  36. 36.
    Rendall, A.: Local and Global Existence Theorems for the Einstein Equations. Living Rev. Relativ. 3 (2000)Google Scholar
  37. 37.
    Simpson, M., Penrose, R.: Internal instability in a Reissner-Nordström Black Hole. Int. J. Theor. Phys. 7, 183–197 (1973)CrossRefGoogle Scholar
  38. 38.
    Twainy, F.: The Time Decay of Solutions to the Scalar Wave Equation in Schwarzschild Background. Thesis. San Diego: University of California 1989Google Scholar
  39. 39.
    Yau, S.T.: Problem Section. In: Seminar on Differential Geometry, ed. by S.T. Yau. Princeton, NJ: Ann. Math. Stud. 1982Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeUnited Kingdom
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations