Advertisement

Inventiones mathematicae

, Volume 161, Issue 3, pp 629–656 | Cite as

The motivic fundamental group of P1∖{0,1,∞} and the theorem of Siegel

  • Minhyong Kim
Article

Keywords

Fundamental Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berthelot, P.: Finitude et pureté cohomologique en cohomologie rigide. With an appendix in English by Aise Johan de Jong. Invent. Math. 128, 329–377 (1997)Google Scholar
  2. 2.
    Besser, A.: Coleman integration using the Tannakian formalism. Math. Ann. 322, 19–48 (2002)CrossRefGoogle Scholar
  3. 3.
    Besser, A., Furusho, H.: The double shuffle relations for p-adic multiple zeta values. math.NT/0310177Google Scholar
  4. 4.
    Chabauty, C.: Sur les points rationnels des courbes algébriques de genre supérieur à l’unité. C. R. Acad. Sci., Paris 212, 882–885 (1941)Google Scholar
  5. 5.
    Chiarellotto, B., Le Stum, B.: F-isocristaux unipotents. Compos. Math. 116, 81–110 (1999)CrossRefGoogle Scholar
  6. 6.
    Coleman, R.F.: Effective Chabauty. Duke Math. J. 52, 765–770 (1985)CrossRefGoogle Scholar
  7. 7.
    Deligne, P.: Le groupe fondamental de la droite projective moins trois points. Galois groups over Q (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., vol. 16. New York: Springer 1989Google Scholar
  8. 8.
    Furusho, H.: p-adic multiple zeta values I – p-adic multiple polylogarithms and the p-adic KZ equation. Invent. Math. 155, 253–286 (2004)CrossRefGoogle Scholar
  9. 9.
    Hain, R.M.: Higher Albanese manifolds. Hodge theory (Sant Cugat, 1985), pp. 84–91. Lect. Notes Math., vol. 1246. Berlin: Springer 1987Google Scholar
  10. 10.
    Köthe, G.: Topological Vector Spaces I. 2nd printing, revised. Berlin, Heidelberg, New York: Springer (1983)Google Scholar
  11. 11.
    Serre, J.-P.: Local Fields. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  12. 12.
    Soulé, C.: K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math. 55, 251–295 (1979)CrossRefGoogle Scholar
  13. 13.
    Vologodsky, V.: Hodge structure on the fundamental group and its application to p-adic integration. Mosc. Math. J. 3, 205–247, 260 (2003)Google Scholar
  14. 14.
    Wintenberger, J.-P.: Un scindage de la filtration de Hodge pour certaines variétés algébriques sur les corps locaux. Ann. Math. (2) 119, 511–548 (1984)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations