Inventiones mathematicae

, Volume 161, Issue 3, pp 629–656 | Cite as

The motivic fundamental group of P1∖{0,1,∞} and the theorem of Siegel

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berthelot, P.: Finitude et pureté cohomologique en cohomologie rigide. With an appendix in English by Aise Johan de Jong. Invent. Math. 128, 329–377 (1997)Google Scholar
  2. 2.
    Besser, A.: Coleman integration using the Tannakian formalism. Math. Ann. 322, 19–48 (2002)CrossRefGoogle Scholar
  3. 3.
    Besser, A., Furusho, H.: The double shuffle relations for p-adic multiple zeta values. math.NT/0310177Google Scholar
  4. 4.
    Chabauty, C.: Sur les points rationnels des courbes algébriques de genre supérieur à l’unité. C. R. Acad. Sci., Paris 212, 882–885 (1941)Google Scholar
  5. 5.
    Chiarellotto, B., Le Stum, B.: F-isocristaux unipotents. Compos. Math. 116, 81–110 (1999)CrossRefGoogle Scholar
  6. 6.
    Coleman, R.F.: Effective Chabauty. Duke Math. J. 52, 765–770 (1985)CrossRefGoogle Scholar
  7. 7.
    Deligne, P.: Le groupe fondamental de la droite projective moins trois points. Galois groups over Q (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., vol. 16. New York: Springer 1989Google Scholar
  8. 8.
    Furusho, H.: p-adic multiple zeta values I – p-adic multiple polylogarithms and the p-adic KZ equation. Invent. Math. 155, 253–286 (2004)CrossRefGoogle Scholar
  9. 9.
    Hain, R.M.: Higher Albanese manifolds. Hodge theory (Sant Cugat, 1985), pp. 84–91. Lect. Notes Math., vol. 1246. Berlin: Springer 1987Google Scholar
  10. 10.
    Köthe, G.: Topological Vector Spaces I. 2nd printing, revised. Berlin, Heidelberg, New York: Springer (1983)Google Scholar
  11. 11.
    Serre, J.-P.: Local Fields. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  12. 12.
    Soulé, C.: K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math. 55, 251–295 (1979)CrossRefGoogle Scholar
  13. 13.
    Vologodsky, V.: Hodge structure on the fundamental group and its application to p-adic integration. Mosc. Math. J. 3, 205–247, 260 (2003)Google Scholar
  14. 14.
    Wintenberger, J.-P.: Un scindage de la filtration de Hodge pour certaines variétés algébriques sur les corps locaux. Ann. Math. (2) 119, 511–548 (1984)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations