Inventiones mathematicae

, Volume 161, Issue 2, pp 225–286 | Cite as

Embedding of the operator space OH and the logarithmic ‘little Grothendieck inequality’

Article

Abstract

We use Voiculescu’s concept of free probability to construct a completely isomorphic embedding of the operator space OH in the predual of a von Neumann algebra. We analyze the properties of this embedding and determine the operator space projection constant of OHn:
$$\frac{1}{108}\sqrt{\frac{n}{1+\ln{n}}} \le \inf_{P:\mathcal{B}(\ell_2)\to{OH}_n, P^2=P} \left\|P\right\|_{cb} \le 288\pi\sqrt{\frac{2n}{1+\ln{n}}}.$$
The lower estimate is a recent result of Pisier and Shlyakhtenko that improves an estimate of order 1/(1+lnn) of the author. The additional factor \(1 / \sqrt{1+\ln{n}}\) indicates that the operator space OHn behaves differently than its classical counterpart \(\ell_2^n\). We give an application of this formula to positive sesquilinear forms on \(\mathcal{B}(\ell_2)\). This leads to logarithmic characterization of C*-algebras with the weak expectation property introduced by Lance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchard, E., Dykema, K.: Embeddings of reduced free products of operator algebras. Pac. J. Math. 199, 1–19 (2001)Google Scholar
  2. 2.
    Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Berlin, New York: Springer 1976Google Scholar
  3. 3.
    Connes, A.: Classification of injective factors. Ann. Math. 104, 585–609 (1976)Google Scholar
  4. 4.
    Connes, A.: Une classification des facteurs de type III. Ann. Sci. Éc. Norm. Supér. 6, 132–252 (1973)Google Scholar
  5. 5.
    Choi, M.-D.: A Schwarz inequality for positive linear maps on C*-algebras. Ill. J. Math. 18, 565–574 (1974)Google Scholar
  6. 6.
    Dykema, K.: Factoriality and Connes’ invariant T(M) for free products of von Neumann algebras. J. Reine Angew. Math. 450, 159–180 (1994)Google Scholar
  7. 7.
    Dykema, K.: Free products of finite dimensional and other von Neumann algebras with respect to non-tracial states, ed. by D. Voiculescu. Fields Inst. Commun. 12, 41–88 (1997)Google Scholar
  8. 8.
    Dykema, K.: Exactness of reduced amalgamated free product C*-algebras exact. Forum Math. 16, 161–180 (2004)Google Scholar
  9. 9.
    Effros, E., Junge, M., Ruan, Z.-J.: Integral mappings and the principle of local reflexivity for non-commutative L1-spaces. Ann. Math. 151, 59–92 (2000)Google Scholar
  10. 10.
    Effros, E., Ruan, Z.-J.: The Grothendieck-Pietsch and Dvoretzky-Rogers theorem for operator spaces. J. Funct. Anal. 122, 428–450 (1994)CrossRefGoogle Scholar
  11. 11.
    Effros, E., Ruan, Z.-J.: Operator spaces. Lond. Math. Soc. Monogr., New Ser. 23. New York: Oxford University Press 2000Google Scholar
  12. 12.
    Groh, U.: Uniform Ergodic Theorems for Identity preserving Schwartz maps on W*-algebras. J. Oper. Theory 11, 395–404 (1984)Google Scholar
  13. 13.
    Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Reprint of Bol. Soc. Mat. São Paulo 8, 1–79 (1953)Google Scholar
  14. 14.
    Haagerup, U.: Lp-spaces associated with an arbitrary von Neumann algebra. Algèbres d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), pp. 175–184, Colloq. Internat. CNRS, 274. Paris: CNRS 1979Google Scholar
  15. 15.
    Haagerup, U.: Non-commutative integration theory. Lecture given at the Symposium in Pure Mathematics of the Amer. Math. Soc., Queens University. Kingston, ON 1980Google Scholar
  16. 16.
    Haagerup, U.: Selfpolar forms, conditional expecations and the weak expecation property. ManuscriptGoogle Scholar
  17. 17.
    Junge, M.: Doob’s inequality for non-commutative martingales. J. Reine Angew. Math 549, 149–190 (2002)Google Scholar
  18. 18.
    Junge, M.: Fubini’s theorem for ultraproducts of noncommutative Lp spaces. Can. J. Math. 56, 983–1021 (2004)MathSciNetGoogle Scholar
  19. 19.
    Junge, M.: A first attempt to the ‘little Grothendieck inequality’ for operator spaces. Preliminary versionGoogle Scholar
  20. 20.
    Junge, M.: Embedding of OH in the predual of the hyperfinite type III1 von Neumann algebra. In preperationGoogle Scholar
  21. 21.
    Junge, M., Nielsen, N., Ruan, Z.-J., Xu, Q.: The local structure of non-commutative Lp spaces I. Adv. Math. 187, 257–319 (2004)CrossRefGoogle Scholar
  22. 22.
    Junge, M., Pisier, G.: Bilinear forms on exact operator spaces and \(\mathcal{B}(H)\otimes\mathcal{B}(H)\). Geom. Funct. Anal. 5, 329–363 (1995)Google Scholar
  23. 23.
    Junge, M., Xu, Q.: Burkholder/Rosenthal inequalities for non-commutative martingales. Ann. Probab. 31, 948–995 (2003)CrossRefGoogle Scholar
  24. 24.
    Junge, M., Xu, Q.: Quantum probablitic tools in operator spaces. In preparationGoogle Scholar
  25. 25.
    Kirchberg, E.: On nonsemisplit extensions, tensor products and exactness of group C*-algebra. Invent. Math. 112, 449–489 (1993)CrossRefGoogle Scholar
  26. 26.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras I/II. Graduate Studies in Mathematics, 15/16. Providence, RI: American Mathematical Society 1997Google Scholar
  27. 27.
    Kosaki, H.: Applications of the complex interpolation method to a von Neumann algebra. J. Funct. Anal. 56, 29–78 (1984)CrossRefGoogle Scholar
  28. 28.
    Lance, E.C.: Hilbert C*-modules. A toolkit for operator algebraists. Lond. Math. Soc. Lect. Note Ser., vol. 210. Cambridge: Cambridge University Press 1995Google Scholar
  29. 29.
    Lust-Piquard, F., Pisier, G.: Non commutative Khintchine and Paley inequalities. Ark. Mat. 29, 241–260 (1991)Google Scholar
  30. 30.
    Lindenstrauss, J., Tzafriri, L.: Lior Classical Banach spaces II. Function spaces. Ergeb. Math. Grenzgeb., vol. 97. Berlin, New York: Springer 1979Google Scholar
  31. 31.
    Nica, A., Shlyakhtenko, D., Speicher, R.: Operator-valued distributions. I. Characterization of freeness. Int. Math. Res. Not., no. 29, 1509–1538 (2002)Google Scholar
  32. 32.
    Paschke, W.: Inner product modules over B*-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)Google Scholar
  33. 33.
    Pisier, G.: Factorization of linear operators and the Geometry of Banach spaces; CBMS (Regional conferences of the A.M.S.) no. 60 (1986). Reprinted with corrections 1987Google Scholar
  34. 34.
    Pisier, G.: Projections from a von Neumann algebra onto a subalgebra. Bull. Soc. Math. Fr. 123, 139–153 (1995)Google Scholar
  35. 35.
    Pisier, G.: Exact operator spaces. Recent Advances in Operator Algebras (Orléans, 1992). Astérisque 232, 159–186 (1995)Google Scholar
  36. 36.
    Pisier, G.: The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Am. Math. Soc. 122, no. 585 (1996)Google Scholar
  37. 37.
    Pisier, G.: Non-commutative vector valued Lp-spaces and completely p-summing maps. Astérisque 247 (1998)Google Scholar
  38. 38.
    Pisier, G.: An introduction to the theory of operator spaces. London Mathematical Society Lecture Note Series 294. Cambridge: Cambridge University Press 2003Google Scholar
  39. 39.
    Pisier, G.: The operator Hilbert space OH and Type III von Neumann algebras. Bull. Lond. Math. Soc. 36, 455–459 (2004)CrossRefGoogle Scholar
  40. 40.
    Pisier, G.: Completely bounded maps into certain Hilbertian operator spaces. Int. Math. Res. Not., no. 74, 3983–4018 (2004)Google Scholar
  41. 41.
    Pisier, G., Shlyakhtenko, D.: Grothendieck’s Theorem for Operator Spaces. Invent. Math. 150, 185–217 (2002)CrossRefGoogle Scholar
  42. 42.
    Pedersen, G.K., Takesaki, M.: The Radon-Nikodym theorem for von Neumann algebras. Acta Math. 130, 53–87 (1973)Google Scholar
  43. 43.
    Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)CrossRefGoogle Scholar
  44. 44.
    Raynaud, Y.: On ultrapowers of non-commutative Lp-spaces. J. Oper. Theory 48, 41–68 (2002)Google Scholar
  45. 45.
    Shlyakhtenko, D.: Free quasi-free states. Pac. J. Math. 177, 329–368 (1997)Google Scholar
  46. 46.
    Speicher, R.: A New Example of ‘Independence’ and ‘White Noise’. Probab. Theory Relat. Fields 84, 141–159 (1990)CrossRefGoogle Scholar
  47. 47.
    Stratila, S.: Modular theory in operator algebras. Abacus Press 1981Google Scholar
  48. 48.
    Takesaki, M.: Theory of operator algebras, I. New York: Springer 1979Google Scholar
  49. 49.
    Takesaki, M.: Theory of operator algebras II. Encyclopaedia of Mathematical Sciences, 127. Operator Algebras and Non-commutative Geometry 6. Berlin: Springer 2003Google Scholar
  50. 50.
    Takesaki, M.: Theory of operator algebras III. Encyclopaedia of Mathematical Sciences, 127. Operator Algebras and Non-commutative Geometry 8. Berlin: Springer 2003Google Scholar
  51. 51.
    Terp, M.: Lp spaces associated with von Neumann algebras. Notes, Math. Institute, Copenhagen Univ. 1981Google Scholar
  52. 52.
    Tomczak-Jaegermann, N.: Computing 2-summing norm with few vectors. Ark. Mat. 17, 273–277 (1979)Google Scholar
  53. 53.
    Voiculescu, D.: Symmetries of some reduced free product C*-algebras. Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), pp. 556–588. Lect. Notes Math., vol. 1132. Berlin: Springer 1985Google Scholar
  54. 54.
    Voiculescu, D.: A strengthened asymptotic freeness result for random matrices with applications to free entropy. Int. Math. Res. Not. 1, 41–63 (1998)CrossRefGoogle Scholar
  55. 55.
    Voiculescu, D., Voiculescu, D.V., Dykema, K., Nica, A.: Free Random Variables. CRM Monogr. Ser., vol. 1. Am. Math. Soc. 1992Google Scholar
  56. 56.
    Xu, Q.: Embedding of noncommutative Cq and Rq in noncommutative Lp. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations