Inventiones mathematicae

, Volume 160, Issue 1, pp 97–144 | Cite as

On the ramification of Hecke algebras at Eisenstein primes

  • Frank Calegari
  • Matthew Emerton


Exact Sequence Modular Form Galois Group Group Scheme Galois Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buzzard, K.: Questions about slopes of modular forms. To appear in AstérisqueGoogle Scholar
  2. 2.
    Fontaine, J.M.: Groupes finis commutatifs sur les vecteurs de Witt. C. R. Acad. Sci., Paris, Sér. A 280, 1423–1425 (1975)MathSciNetGoogle Scholar
  3. 3.
    Fontaine, J.: Il n’y a pas de variété abélienne sur Z. Invent. Math. 81, 515–538 (1985)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gerth III, F.: Ranks of 3-class groups of non-Galois cubic fields. Acta Arith. 30, 307–322 (1976)MathSciNetGoogle Scholar
  5. 5.
    Halter–Koch, F.: Einheiten und Divisorenklassen in Galois’schen algebraischen Zahlkörpern mit Diedergruppe der Ordnung 2l für eine ungerade Primzahl l. Acta Arith. 33, 355–364 (1977)MathSciNetGoogle Scholar
  6. 6.
    Lenstra Jr., H.W.: Complete intersections and Gorenstein rings. In: Elliptic curves, modular forms and Fermat’s Last Theorem, ed. by J. Coates, S.T. Yau. Cambridge: International Press 1995Google Scholar
  7. 7.
    Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci. 47, 33–186 (1977)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mazur, B.: An introduction to the deformation theory of Galois representations. In: Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 243–311. New York: Springer 1997Google Scholar
  9. 9.
    Merel, L.: L’accouplement de Weil entre le sous-groupe de Shimura et le sous-groupe cuspidal de J0(p). J. Reine Angew. Math. 477, 71–115 (1996)MathSciNetGoogle Scholar
  10. 10.
    Oort, F.: Commutative group schemes. Lect. Notes Math., vol. 15. Springer 1966Google Scholar
  11. 11.
    Oort, F., Tate, J.: Group schemes of prime order. Ann. Sci. Éc. Norm. Supér., IV. Sér. 3, 1–21 (1970)MathSciNetGoogle Scholar
  12. 12.
    Quillen, D.: Higher algebraic K-theory. I. In: Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Lect. Notes Math., vol. 341, pp. 85–147. Berlin: Springer 1973Google Scholar
  13. 13.
    Ramakrishna, R.: On a variation of Mazur’s deformation functor. Compos. Math. 87, 269–286 (1993)MathSciNetGoogle Scholar
  14. 14.
    Raynaud, M.: Schémas en groupes de type (p,...,p). Bull. Soc. Math. Fr. 102, 241–280 (1974)MathSciNetGoogle Scholar
  15. 15.
    Scholz, A.: Idealklassen und Einheiten in kubischen Körpern. Monatsh. Math. Phys. 40, 211–222 (1933)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Skinner, C., Wiles, A.: Ordinary representations and modular forms. Proc. Natl. Acad. Sci. USA 94, 10520–10527 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem. Ann. Math. 141, 443–551 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations