Inventiones mathematicae

, Volume 159, Issue 3, pp 657–667 | Cite as

Simply connected symplectic 4-manifolds with b2+=1 and c12=2



In this article we construct a new simply connected symplectic 4-manifold with b2+=1 and c12=2 which is homeomorphic, but not diffeomorphic, to a rational surface by using rational blow-down technique. As a corollary, we conclude that a rational surface \(\mathbf{C}P^{2}{\sharp} 7 \overline{\mathbf{C}P}^{2}\) admits an exotic smooth structure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auroux, D.: Personal communicationGoogle Scholar
  2. 2.
    Barlow, R.: A simply connected surface of general type with pg=0. Invent. Math. 79, 293–301 (1984)Google Scholar
  3. 3.
    Barth, W., Peters, C., Van de Ven, A.: Compact comlex surfaces. Springer 1984Google Scholar
  4. 4.
    Catanese, F., Lebrun, C.: On the scalar curvature of Einstein manifolds. Math. Res. Lett. 4, 843–854 (1997)Google Scholar
  5. 5.
    Donaldson, S., Kronheimer, P.: Geometry of four-manifolds. Oxford: Oxford University Press 1990Google Scholar
  6. 6.
    Fintushel, R.: Personal communicationGoogle Scholar
  7. 7.
    Fintushel, R., Stern, R.: Rational blowdowns of smooth 4-manifolds. J. Differ. Geom. 46, 181–235 (1997)Google Scholar
  8. 8.
    Fintushel, R., Stern, R.: Immersed 2-spheres in 4-manifolds and the immersed Thom conjecture. Turk. J. Math. 19, 27–39 (1995)Google Scholar
  9. 9.
    Fintushel, R., Stern, R.: Knots, links and 4-manifolds. Invent. Math. 134, 363–400 (1998)Google Scholar
  10. 10.
    Gompf, R.: A new construction of symplectic manifolds. Ann. Math. (2) 142, 527–595 (1995)Google Scholar
  11. 11.
    Harer, J., Kas, A., Kirby, R.: Handlebody decompositions of complex surfaces. Mem. Am. Math. Soc. 62, no. 350 (1986)Google Scholar
  12. 12.
    Kazez, W.: Geometric Topology – Part 2. Studies in Advanced Mathematics 2.2. AMS/IP 1997Google Scholar
  13. 13.
    Kotschick, D.: On manifolds homeomorphic to \(\mathbf{C}P^2 {\sharp} 8{\overline{\mathbf{C}P}^2}\). Invent. Math. 95, 591–600 (1989)Google Scholar
  14. 14.
    Kotschick, D.: Monopole classes and Einstein metrics. Int. Math. Res. Not. 12, 593–609 (2004)Google Scholar
  15. 15.
    Li, T., Liu, A.: Symplectic structures on ruled surfaces and a generalized adjunction formula. Math. Res. Lett. 2, 453–471 (1995)Google Scholar
  16. 16.
    Morgan, J.: The Seiberg-Witten equations and applications to the topology of smooth four-manifolds. Math. Notes 44. Princeton: Princeton University Press 1996Google Scholar
  17. 17.
    McDuff, D., Salamon, D.: A survey of symplectic 4-manifolds with b2+=1. Turk. J. Math. 20, 47–61 (1996)Google Scholar
  18. 18.
    Symington, M.: Symplectic rational blowdowns. J. Differ. Geom. 50, 505–518 (1998)Google Scholar
  19. 19.
    Szabó, Z.: Exotic 4-manifolds with b2+=1. Math. Res. Lett. 3, 731–741 (1996)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Mathematical SciencesSeoul National UniversitySeoulKorea

Personalised recommendations