Inventiones mathematicae

, Volume 158, Issue 2, pp 323–341 | Cite as

The geometry of minimal surfaces of finite genus II; nonexistence of one limit end examples

Article

Abstract

We demonstrate that a properly embedded minimal surface in ℝ3 with finite genus cannot have one limit end.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Callahan, M., Hoffman, D., Meeks III, W.H.: The structure of singly-periodic minimal surfaces. Invent. Math. 99, 455–481 (1990)MATHGoogle Scholar
  2. 2.
    Colding, T.H., Minicozzi II, W.P.: An excursion into geometric analysis. Surveys in Diff. Geom. IX. International Press. To appearGoogle Scholar
  3. 3.
    Colding, T.H., Minicozzi II, W.P.: The space of embedded minimal surfaces of fixed genus in a 3-manifold I; Estimates off the axis for disks. Ann. Math. (2). To appear. arXiv:math.AP/0210106Google Scholar
  4. 4.
    Colding, T.H., Minicozzi II, W.P.: The space of embedded minimal surfaces of fixed genus in a 3-manifold II; Multi-valued graphs in disks. Ann. Math. (2). To appear. arXiv:math.AP/0210086Google Scholar
  5. 5.
    Colding, T.H., Minicozzi II, W.P.: The space of embedded minimal surfaces of fixed genus in a 3-manifold III; Planar domains. Ann. Math. (2). To appear. arXiv:math.AP/0210141Google Scholar
  6. 6.
    Colding, T.H., Minicozzi II, W.P.: The space of embedded minimal surfaces of fixed genus in a 3-manifold IV; Locally simply-connected. Ann. Math. (2). To appear. arXiv:math.AP/0210119Google Scholar
  7. 7.
    Colding, T.H., Minicozzi II, W.P.: The space of embedded minimal surfaces of fixed genus in a 3-manifold V; Fixed genus. In preparationGoogle Scholar
  8. 8.
    Colding, T.H., Minicozzi II, W.P.: Multi-valued minimal graphs and properness of disks. Int. Math. Res. Not. 21, 1111–1127 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Collin, P.: Topologie et courbure des surfaces minimales de ℝ3. Ann. Math. (2) 145–1, 1–31 (1997)Google Scholar
  10. 10.
    Collin, P., Kusner, R., Meeks III, W.H., Rosenberg, H.: The geometry, conformal structure and topology of minimal surfaces with infinite topology. J. Differ. Geom. To appearGoogle Scholar
  11. 11.
    do Carmo, M., Peng, C.K.: Stable minimal surfaces in ℝ3 are planes. Bull. Am. Math. Soc., New Ser. 1, 903–906 (1979)Google Scholar
  12. 12.
    Fischer-Colbrie, D.: On complete minimal surfaces with finite Morse index in 3-manifolds. Invent. Math. 82, 121–132 (1985)MATHGoogle Scholar
  13. 13.
    Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Commun. Pure Appl. Math. 33, 199–211 (1980)MATHGoogle Scholar
  14. 14.
    Frohman, C., Meeks III, W.H.: The ordering theorem for the ends of properly embedded minimal surfaces. Topology 36, 605–617 (1997)CrossRefMATHGoogle Scholar
  15. 15.
    Gulliver, R., Lawson, H.B.: The structure of minimal hypersurfaces near a singularity. Proc. Symp. Pure Math. 44, 213–237 (1986)MATHGoogle Scholar
  16. 16.
    Hoffman, D., Meeks III, W.H.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101, 373–377 (1990)MATHGoogle Scholar
  17. 17.
    López, F.J.: Minimal surfaces in a cone. Ann. Global Anal. Geom. 20, 253–299 (2001)CrossRefGoogle Scholar
  18. 18.
    López, F.J., Ros, A.: On embedded complete minimal surfaces of genus zero. J. Differ. Geom. 33, 293–300 (1991)Google Scholar
  19. 19.
    Meeks III, W.H.: Global problems in classical minimal surface theory. Proceedings of the Clay Institute on the Global Theory of Minimal Surfaces. To appearGoogle Scholar
  20. 20.
    Meeks III, W.H.: The regularity of the singular set in the Colding and Minicozzi lamination theorem. Duke Math. J. To appearGoogle Scholar
  21. 21.
    Meeks III, W.H.: Geometric results in classical minimal surface theory. Surveys in Diff. Geom. VIII, ed. by S.T. Yau. International Press 2003Google Scholar
  22. 22.
    Meeks III, W.H., Pérez, J.: Recent advances in classical minimal surface theory. Surveys in Diff. Geom. IX. International Press. To appearGoogle Scholar
  23. 23.
    Meeks III, W.H., Pérez, J., Ros, A.: The geometry of minimal surfaces of finite genus I; curvature estimates and quasiperiodicity. J. Differ. Geom. To appearGoogle Scholar
  24. 24.
    Meeks III, W.H., Pérez, J., Ros, A.: The geometry of minimal surfaces of finite genus III; bounds on the topology and index of classical minimal surfaces. PreprintGoogle Scholar
  25. 25.
    Meeks III, W.H., Pérez, J., Ros, A.: The geometry of minimal surfaces of finite genus IV; Jacobi fields and uniqueness for small flux. Work in progressGoogle Scholar
  26. 26.
    Meeks III, W.H., Pérez, J., Ros, A.: The geometry of minimal surfaces of finite genus V; classification of genus zero examples. In preparationGoogle Scholar
  27. 27.
    Meeks III, W.H., Rosenberg, H.: The uniqueness of the helicoid and the asymptotic geometry of properly embedded minimal surfaces with finite topology. Ann Math. (2). To appearGoogle Scholar
  28. 28.
    Meeks III, W.H., Rosenberg, H.: The geometry and conformal structure of properly embedded minimal surfaces of finite topology in ℝ3. Invent. Math. 114, 625–639 (1993)Google Scholar
  29. 29.
    Pérez, J., Ros, A.: Properly embedded minimal surfaces with finite total curvature. In: The Global Theory of Minimal Surfaces in Flat Spaces Lect. Notes Math. 1775, pp. 15–66, ed. by G.P. Pirola. Springer 1999Google Scholar
  30. 30.
    Riemann, B.: Oeuvres Mathématiques de Riemann. Paris: Gauthiers-Villars 1898Google Scholar
  31. 31.
    Ros, A.: Embedded minimal surfaces: forces, topology and symmetries. Calc. Var. Partial Differ. Equ. 4, 469–496 (1996)CrossRefMATHGoogle Scholar
  32. 32.
    Schoen, R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ. Geom. 18, 791–809 (1983)MATHGoogle Scholar
  33. 33.
    Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Center for Mathematical Analysis, Vol. 3. Canberra, Australia: Australian National University 1983Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Mathematics, Lederle Graduate Research CenterUniversity of MassachusettsAmherstUSA
  2. 2.Departamento de Geometria y TopologiaUniversidad de Granada, s/nGranadaSpain

Personalised recommendations